A hexapod walker using a heterarchical architecture for action selection

Schilling M, Paskarbeit J, Hoinville T, Hüffmeier A, Schneider A, Schmitz J, Cruse H (2013)
Frontiers in Computational Neuroscience 7: 126.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Abstract / Bemerkung
Moving in a cluttered environment with a six-legged walking machine that has additional body actuators, therefore controlling 22 DoFs, is not a trivial task. Already simple forward walking on a flat plane requires the system to select between different internal states. The orchestration of these states depends on walking velocity and on external disturbances. Such disturbances occur continuously, for example due to irregular up-and-down movements of the body or slipping of the legs, even on flat surfaces, in particular when negotiating tight curves. The number of possible states is further increased when the system is allowed to walk backward or when front legs are used as grippers and cannot contribute to walking. Further states are necessary for expansion that allow for navigation. Here we demonstrate a solution for the selection and sequencing of different (attractor) states required to control different behaviors as are forward walking at different speeds, backward walking, as well as negotiation of tight curves. This selection is made by a recurrent neural network (RNN) of motivation units, controlling a bank of decentralized memory elements in combination with the feedback through the environment. The underlying heterarchical architecture of the network allows to select various combinations of these elements. This modular approach representing an example of neural reuse of a limited number of procedures allows for adaptation to different internal and external conditions. A way is sketched as to how this approach may be expanded to form a cognitive system being able to plan ahead. This architecture is characterized by different types of modules being arranged in layers and columns, but the complete network can also be considered as a holistic system showing emergent properties which cannot be attributed to a specific module.
Erscheinungsjahr
Zeitschriftentitel
Frontiers in Computational Neuroscience
Band
7
Seite(n)
126
ISSN
eISSN
Finanzierungs-Informationen
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
PUB-ID

Zitieren

Schilling M, Paskarbeit J, Hoinville T, et al. A hexapod walker using a heterarchical architecture for action selection. Frontiers in Computational Neuroscience. 2013;7:126.
Schilling, M., Paskarbeit, J., Hoinville, T., Hüffmeier, A., Schneider, A., Schmitz, J., & Cruse, H. (2013). A hexapod walker using a heterarchical architecture for action selection. Frontiers in Computational Neuroscience, 7, 126. doi:10.3389/fncom.2013.00126
Schilling, M., Paskarbeit, J., Hoinville, T., Hüffmeier, A., Schneider, A., Schmitz, J., and Cruse, H. (2013). A hexapod walker using a heterarchical architecture for action selection. Frontiers in Computational Neuroscience 7, 126.
Schilling, M., et al., 2013. A hexapod walker using a heterarchical architecture for action selection. Frontiers in Computational Neuroscience, 7, p 126.
M. Schilling, et al., “A hexapod walker using a heterarchical architecture for action selection”, Frontiers in Computational Neuroscience, vol. 7, 2013, pp. 126.
Schilling, M., Paskarbeit, J., Hoinville, T., Hüffmeier, A., Schneider, A., Schmitz, J., Cruse, H.: A hexapod walker using a heterarchical architecture for action selection. Frontiers in Computational Neuroscience. 7, 126 (2013).
Schilling, Malte, Paskarbeit, Jan, Hoinville, Thierry, Hüffmeier, Arne, Schneider, Axel, Schmitz, Josef, and Cruse, Holk. “A hexapod walker using a heterarchical architecture for action selection”. Frontiers in Computational Neuroscience 7 (2013): 126.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2017-04-25T11:50:53Z

8 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

ReaCog, a Minimal Cognitive Controller Based on Recruitment of Reactive Systems.
Schilling M, Cruse H., Front Neurorobot 11(), 2017
PMID: 28194106
Development and Training of a Neural Controller for Hind Leg Walking in a Dog Robot.
Hunt A, Szczecinski N, Quinn R., Front Neurorobot 11(), 2017
PMID: 28420977
Adaptive Control Strategies for Interlimb Coordination in Legged Robots: A Review.
Aoi S, Manoonpong P, Ambe Y, Matsuno F, Wörgötter F., Front Neurorobot 11(), 2017
PMID: 28878645
Editorial: Modularity in motor control: from muscle synergies to cognitive action representation.
d'Avella A, Giese M, Ivanenko YP, Schack T, Flash T., Front Comput Neurosci 9(), 2015
PMID: 26500533
A neuromechanical simulation of insect walking and transition to turning of the cockroach Blaberus discoidalis.
Szczecinski NS, Brown AE, Bender JA, Quinn RD, Ritzmann RE., Biol Cybern 108(1), 2014
PMID: 24178847
Biologically-inspired adaptive obstacle negotiation behavior of hexapod robots.
Goldschmidt D, Wörgötter F, Manoonpong P., Front Neurorobot 8(), 2014
PMID: 24523694

70 References

Daten bereitgestellt von Europe PubMed Central.

Neural reuse: a fundamental organizational principle of the brain.
Anderson ML., Behav Brain Sci 33(4), 2010
PMID: 20964882
Physiologically based control laws featuring antagonistic muscle co-activation for stable compliant joint drives
Annunziata S., Schneider A.., 2012
Neuronal control of locomotion in the lobster, Homarus americanus. I. Motor programs for forward and backward walking
Ayers J., Davis W.., 1977

Bässler U.., 1983
Pattern generation for stick insect walking movements--multisensory control of a locomotor program.
Bassler U, Buschges A., Brain Res. Brain Res. Rev. 27(1), 1998
PMID: 9639677
Crossing large gaps: a simulation study of stick insect behavior
Bläsing B.., 2006
Optical imaging of neuronal populations during decision-making.
Briggman KL, Abarbanel HD, Kristan WB Jr., Science 307(5711), 2005
PMID: 15705844
Multifunctional pattern-generating circuits.
Briggman KL, Kristan WB., Annu. Rev. Neurosci. 31(), 2008
PMID: 18558856
What mechanisms coordinate leg movement in walking arthropods?
Cruse H., Trends Neurosci. 13(1), 1990
PMID: 1688670
The talking stick: a cognitive system in a nutshell
Cruse H.., 2010
Principles of insect locomotion
Cruse H., Dürr V., Schilling M., Schmitz J.., 2009
Tight turns in stick insects.
Cruse H, Ehmanns I, Stubner S, Schmitz J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 195(3), 2009
PMID: 19137316
Walknet-a biologically inspired network to control six-legged walking.
Cruse H, Kindermann T, Schumm M, Dean J, Schmitz J., Neural Netw 11(7-8), 1998
PMID: 12662760
Learning and retrieval of hierarchically organized information in a simple, one-layered RNN
Cruse H., Schilling M.., 2010
From egocentric systems to systems allowing for theory of mind and mutualism
Cruse H., Schilling M.., 2011
No need for a cognitive map: decentralized memory for insect navigation.
Cruse H, Wehner R., PLoS Comput. Biol. 7(3), 2011
PMID: 21445233
Combinations of muscle synergies in the construction of a natural motor behavior.
d'Avella A, Saltiel P, Bizzi E., Nat. Neurosci. 6(3), 2003
PMID: 12563264
Coding proprioceptive information to control movement to a target: simulation with a simple neural network
Dean J.., 1990
A model of leg coordination in the stick insect, Carausius morosus. I. A geometrical consideration of contralateral and ipsilateral coordination mechanisms between two adjacent legs
Dean J.., 1991
A model of leg coordination in the stick insect, Carausius morosus. II. Description of the kinematic model and simulation of normal step patterns
Dean J.., 1991
A model of leg coordination in the stick insect, Carausius morosus. III. Responses to perturbations of normal coordination
Dean J.., 1992
A model of leg coordination in the stick insect, Carausius morosus. IV. Comparisons of different forms of coordinating mechanismus
Dean J.., 1992
Stick insects walking along inclined surfaces.
Diederich B, Schumm M, Cruse H., Integr. Comp. Biol. 42(1), 2002
PMID: 21708706
Active tactile exploration for adaptive locomotion in the stick insect.
Schutz C, Durr V., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1581), 2011
PMID: 21969681
Behaviour-based modelling of hexapod locomotion: linking biology and technical application.
Durr V, Schmitz J, Cruse H., Arthropod structure & development. 33(3), 2004
PMID: IND43653723
Motor primitives in vertebrates and invertebrates.
Flash T, Hochner B., Curr. Opin. Neurobiol. 15(6), 2005
PMID: 16275056
The concepts of 'sameness' and 'difference' in an insect.
Giurfa M, Zhang S, Jenett A, Menzel R, Srinivasan MV., Nature 410(6831), 2001
PMID: 11309617
A behavioural analysis of the temporal organisation of walking movements in the 1st instar and adult stick insect
Graham D.., 1972
Behaviour and motor output for an insect walking on a slippery surface. II. Backward walking
Graham D., Epstein D.., 1985
Straight walking and turning on a slippery surface.
Gruhn M, Zehl L, Buschges A., J. Exp. Biol. 212(Pt 2), 2009
PMID: 19112138
Funktionsschaltbilder als Hilfsmittel zur Darstellung theoretischer Konzepte in der Verhaltensbiologie
Hassenstein B.., 1983
Learning and retrieval of memory elements in a navigation task
Hoinville T., Wehner R., Cruse H.., 2012
Mechanical stability in stick insects when walking straight and around curves
Jander J.., 1985
Automated derivation of behavior vocabularies for autonomous humanoid motion
Jenkins O., Mataric M.., 2003
From hunger to satiety: reconfiguration of a feeding network by Aplysia neuropeptide Y.
Jing J, Vilim FS, Horn CC, Alexeeva V, Hatcher NG, Sasaki K, Yashina I, Zhurov Y, Kupfermann I, Sweedler JV, Weiss KR., J. Neurosci. 27(13), 2007
PMID: 17392465
Behavior and adaptability of a six-legged walking system with highly distributed control
Kindermann T.., 2002
Learning from the spinal cord.
Loeb GE., J. Physiol. (Lond.) 533(Pt 1), 2001
PMID: 11351019
A bottom-up mechanism for behaviour selection in an artificial creature
Maes P.., 1991
Elements for a general memory structure: properties of recurrent neural networks used to form situation models.
Makarov VA, Song Y, Velarde MG, Hubner D, Cruse H., Biol Cybern 98(5), 2008
PMID: 18350312

McFarland D., Bösser T.., 1993
Kinematic networks. A distributed model for representing and regularizing motor redundancy.
Mussa Ivaldi FA, Morasso P, Zaccaria R., Biol Cybern 60(1), 1988
PMID: 3214648

Schack T.., 2010
The cognitive nature of action - functional links between cognitive psychology, movement science and robotics
Schack T., Ritter H.., 2009
Dynamic equations in MMC networks: Construction of a dynamic body model
Schilling M.., 2009
Universally manipulable body models—dual quaternion representations in layered and dynamic MMCs
Schilling M.., 2011
Walknet, a bio-inspired controller for hexapod walking.
Schilling M, Hoinville T, Schmitz J, Cruse H., Biol Cybern 107(4), 2013
PMID: 23824506
Grounding an internal body model of a hexapod walker—control of curve walking in a biological inspired robot—control of curve walking in a biological inspired robot
Schilling M., Paskarbeit J., Schmitz J., Schneider A., Cruse H.., 2012
No need for a body model: positive velocity feedback for the control of an 18-DOF robot walker
Schmitz J., Schneider A., Schilling M., Cruse H.., 2008
Biomechatronics for embodied intelligence of an insectoid robot
Schneider A., Paskarbeit J., Schäffersmann M., Schmitz J.., 2011
Control of swing movement: influences of differently shaped substrate.
Schumm M, Cruse H., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 192(10), 2006
PMID: 16830135
The symbol grounding problem is solved, so what's next?
Steels L.., 2007
Self-organized adaptation of a simple neural circuit enables complex robot behaviour
Steingrube A., Timme M., Wörgötter F., Manoonpong P.., 2010
A neuromechanical model explaining forward and backward stepping in the stick insect.
Toth TI, Knops S, Daun-Gruhn S., J. Neurophysiol. 107(12), 2012
PMID: 22402652
Distributed adaptive control: a theory of the mind, brain, body nexus
Verschure P.., 2012
Über das Marionettentheater
von H.., 1810
Inter-leg coordination in the control of walking speed in Drosophila.
Wosnitza A, Bockemuhl T, Dubbert M, Scholz H, Buschges A., J. Exp. Biol. 216(Pt 3), 2012
PMID: 23038731
Inter-leg coordination in the control of walking speed in Drosophila.
Wosnitza A, Bockemuhl T, Dubbert M, Scholz H, Buschges A., J. Exp. Biol. 216(Pt 3), 2012
PMID: 23038731

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 24062682
PubMed | Europe PMC

Suchen in

Google Scholar