Lukas Pfannschmidt
lpfannschmidt@techfak.uni-bielefeld.de
PEVZ-ID
7 Publikationen
-
2021 | Bielefelder E-Dissertation | PUB-ID: 2959861Relevance learning for redundant featuresPUB | PDF | DOI
Pfannschmidt, Lukas, Relevance learning for redundant features. (). Bielefeld, 2021 -
2020 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2939517Feature Relevance Determination for Ordinal Regression in the Context of Feature Redundancies and Privileged InformationPUB | DOI | Download (ext.) | WoS | arXiv
Pfannschmidt, Lukas, Feature Relevance Determination for Ordinal Regression in the Context of Feature Redundancies and Privileged Information. Neurocomputing (). , 2020 -
2020 | Preprint | Entwurf | PUB-ID: 2942271Sequential Feature Classification in the Context of RedundanciesPUB | PDF | arXiv
Pfannschmidt, Lukas, Sequential Feature Classification in the Context of Redundancies. (). , 2020 -
2019 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2933893Feature Relevance Bounds for Ordinal RegressionPUB | Download (ext.) | arXiv
Pfannschmidt, Lukas, Feature Relevance Bounds for Ordinal Regression. Proceedings of the 27th European Symposium on Artificial Neural Networks (ESANN 2019) (). Louvain-la-Neuve, 2019 -
2019 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2935456FRI - Feature Relevance Intervals for Interpretable and Interactive Data ExplorationPUB | PDF | DOI | arXiv
Pfannschmidt, Lukas, FRI - Feature Relevance Intervals for Interpretable and Interactive Data Exploration. (). , 2019 -
2018 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2915273Interpretation of Linear Classifiers by Means of Feature Relevance BoundsPUB | PDF | DOI | WoS
Göpfert, Christina, Interpretation of Linear Classifiers by Means of Feature Relevance Bounds. Neurocomputing 298 (). , 2018 -
2017 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2908201Feature Relevance Bounds for Linear ClassificationPUB | Dateien verfügbar | Download (ext.)
Göpfert, Christina, Feature Relevance Bounds for Linear Classification. Proceedings of the ESANN, 24th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (). Louvain-la-Neuve, 2017