Lukas Pfannschmidt
lpfannschmidt@techfak.uni-bielefeld.de
PEVZ-ID
7 Publikationen
-
-
2020 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2939517Pfannschmidt L, Jakob J, Hinder F, Biehl M, Tino P, Hammer B. Feature Relevance Determination for Ordinal Regression in the Context of Feature Redundancies and Privileged Information. Neurocomputing. 2020.PUB | DOI | Download (ext.) | WoS | arXiv
-
-
2019 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2933893Pfannschmidt L, Jakob J, Biehl M, Tino P, Hammer B. Feature Relevance Bounds for Ordinal Regression. In: Verleysen M, ed. Proceedings of the 27th European Symposium on Artificial Neural Networks (ESANN 2019). Louvain-la-Neuve: i6doc; 2019.PUB | Download (ext.) | arXiv
-
2019 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2935456Pfannschmidt L, Göpfert C, Neumann U, Heider D, Hammer B. FRI - Feature Relevance Intervals for Interpretable and Interactive Data Exploration. Presented at the 16th IEEE International Conference on Computational Intelligence in Bioinformatics and Computational Biology, Certosa di Pontignano, Siena - Tuscany, Italy.PUB | PDF | DOI | arXiv
-
-
2017 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2908201Göpfert C, Pfannschmidt L, Hammer B. Feature Relevance Bounds for Linear Classification. In: Verleysen M, ed. Proceedings of the ESANN, 24th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Louvain-la-Neuve: Ciaco - i6doc.com; 2017: 187--192.PUB | Dateien verfügbar | Download (ext.)