Lukas Pfannschmidt
lpfannschmidt@techfak.uni-bielefeld.de
PEVZ-ID
7 Publikationen
-
-
2020 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2939517Pfannschmidt, Lukas, Jakob, Jonathan, Hinder, Fabian, Biehl, Michael, Tino, Peter, and Hammer, Barbara. “Feature Relevance Determination for Ordinal Regression in the Context of Feature Redundancies and Privileged Information”. Neurocomputing (2020).PUB | DOI | Download (ext.) | WoS | arXiv
-
-
2019 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2933893Pfannschmidt, Lukas, Jakob, Jonathan, Biehl, Michael, Tino, Peter, and Hammer, Barbara. “Feature Relevance Bounds for Ordinal Regression”. Proceedings of the 27th European Symposium on Artificial Neural Networks (ESANN 2019). Ed. Michel Verleysen. Louvain-la-Neuve: i6doc, 2019.PUB | Download (ext.) | arXiv
-
2019 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2935456Pfannschmidt, Lukas, Göpfert, Christina, Neumann, Ursula, Heider, Dominik, and Hammer, Barbara. “FRI - Feature Relevance Intervals for Interpretable and Interactive Data Exploration”. Presented at the 16th IEEE International Conference on Computational Intelligence in Bioinformatics and Computational Biology, Certosa di Pontignano, Siena - Tuscany, Italy, 2019.PUB | PDF | DOI | arXiv
-
-
2017 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2908201Göpfert, Christina, Pfannschmidt, Lukas, and Hammer, Barbara. “Feature Relevance Bounds for Linear Classification”. Proceedings of the ESANN, 24th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Ed. Michele Verleysen. Louvain-la-Neuve: Ciaco - i6doc.com, 2017. 187--192.PUB | Dateien verfügbar | Download (ext.)