6 Publikationen

Alle markieren

[6]
2020 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2939517
Pfannschmidt, L., Jakob, J., Hinder, F., Biehl, M., Tino, P., & Hammer, B. (2020). Feature Relevance Determination for Ordinal Regression in the Context of Feature Redundancies and Privileged Information. Neurocomputing. doi:10.1016/j.neucom.2019.12.133
PUB | DOI | Download (ext.) | arXiv
 
[5]
2020 | Preprint | Entwurf | PUB-ID: 2942271 OA
Pfannschmidt, L., & Hammer, B. (Draft). Sequential Feature Classification in the Context of Redundancies
PUB | PDF | arXiv
 
[4]
2019 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2933893
Pfannschmidt, L., Jakob, J., Biehl, M., Tino, P., & Hammer, B. (2019). Feature Relevance Bounds for Ordinal Regression. In M. Verleysen (Ed.), Proceedings of the 27th European Symposium on Artificial Neural Networks (ESANN 2019) Louvain-la-Neuve: i6doc.
PUB | Download (ext.) | arXiv
 
[3]
2019 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2935456 OA
Pfannschmidt, L., Göpfert, C., Neumann, U., Heider, D., & Hammer, B. (2019). FRI - Feature Relevance Intervals for Interpretable and Interactive Data Exploration. Presented at the 16th IEEE International Conference on Computational Intelligence in Bioinformatics and Computational Biology, Certosa di Pontignano, Siena - Tuscany, Italy. doi:10.1109/CIBCB.2019.8791489
PUB | PDF | DOI | arXiv
 
[2]
2018 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2915273 OA
Göpfert, C., Pfannschmidt, L., Göpfert, J. P., & Hammer, B. (2018). Interpretation of Linear Classifiers by Means of Feature Relevance Bounds. Neurocomputing, 298, 69-79. doi:10.1016/j.neucom.2017.11.074
PUB | PDF | DOI | WoS
 
[1]
2017 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2908201 OA
Göpfert, C., Pfannschmidt, L., & Hammer, B. (2017). Feature Relevance Bounds for Linear Classification. In M. Verleysen (Ed.), Proceedings of the ESANN, 24th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (pp. 187--192). Louvain-la-Neuve: Ciaco - i6doc.com.
PUB | Dateien verfügbar | Download (ext.)
 

Suche

Publikationen filtern

Darstellung / Sortierung

Zitationsstil: apa

Export / Einbettung

6 Publikationen

Alle markieren

[6]
2020 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2939517
Pfannschmidt, L., Jakob, J., Hinder, F., Biehl, M., Tino, P., & Hammer, B. (2020). Feature Relevance Determination for Ordinal Regression in the Context of Feature Redundancies and Privileged Information. Neurocomputing. doi:10.1016/j.neucom.2019.12.133
PUB | DOI | Download (ext.) | arXiv
 
[5]
2020 | Preprint | Entwurf | PUB-ID: 2942271 OA
Pfannschmidt, L., & Hammer, B. (Draft). Sequential Feature Classification in the Context of Redundancies
PUB | PDF | arXiv
 
[4]
2019 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2933893
Pfannschmidt, L., Jakob, J., Biehl, M., Tino, P., & Hammer, B. (2019). Feature Relevance Bounds for Ordinal Regression. In M. Verleysen (Ed.), Proceedings of the 27th European Symposium on Artificial Neural Networks (ESANN 2019) Louvain-la-Neuve: i6doc.
PUB | Download (ext.) | arXiv
 
[3]
2019 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2935456 OA
Pfannschmidt, L., Göpfert, C., Neumann, U., Heider, D., & Hammer, B. (2019). FRI - Feature Relevance Intervals for Interpretable and Interactive Data Exploration. Presented at the 16th IEEE International Conference on Computational Intelligence in Bioinformatics and Computational Biology, Certosa di Pontignano, Siena - Tuscany, Italy. doi:10.1109/CIBCB.2019.8791489
PUB | PDF | DOI | arXiv
 
[2]
2018 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2915273 OA
Göpfert, C., Pfannschmidt, L., Göpfert, J. P., & Hammer, B. (2018). Interpretation of Linear Classifiers by Means of Feature Relevance Bounds. Neurocomputing, 298, 69-79. doi:10.1016/j.neucom.2017.11.074
PUB | PDF | DOI | WoS
 
[1]
2017 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2908201 OA
Göpfert, C., Pfannschmidt, L., & Hammer, B. (2017). Feature Relevance Bounds for Linear Classification. In M. Verleysen (Ed.), Proceedings of the ESANN, 24th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (pp. 187--192). Louvain-la-Neuve: Ciaco - i6doc.com.
PUB | Dateien verfügbar | Download (ext.)
 

Suche

Publikationen filtern

Darstellung / Sortierung

Zitationsstil: apa

Export / Einbettung