14 Publikationen
-
2024 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2988848Banas, L.; Mukam, J. D. (2024): Improved estimates for the sharp interface limit of the stochastic Cahn–Hilliard equation with space-time white noise Interfaces and Free Boundaries, Mathematical Analysis, Computation and ApplicationsPUB | DOI | WoS
-
-
-
-
-
2020 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958786Mukam, J. D.; Tambue, A. (2020): Strong convergence of the linear implicit Euler method for the finite element discretization of semilinear non-autonomous SPDEs driven by multiplicative or additive noise Applied Numerical Mathematics,147: 222-253.PUB | DOI | WoS
-
-
2020 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958782Mukam, J. D.; Tambue, A. (2020): Strong convergence of a stochastic Rosenbrock-type scheme for the finite element discretization of semilinear SPDEs driven by multiplicative and additive noise Stochastic Processes and their Applications,130:(8): 4968-5005.PUB | DOI | WoS
-
2019 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2959421Tambue, A.; Mukam, J. D. (2019): Strong convergence and stability of the semi-tamed and tamed Euler schemes for stochastic differential equations with jumps under non-global Lipschitz condition Int. J. Numer. Anal. Mod., 16, pp. 847-872PUB | Download (ext.)
-
2019 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958781Mukam, J. D.; Tambue, A. (2019): Optimal strong convergence rates of numerical methods for semilinear parabolic SPDE driven by Gaussian noise and Poisson random measure Computers & Mathematics with Applications,77:(10): 2786-2803.PUB | DOI | WoS
-
2019 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958785Tambue, A.; Mukam, J. D. (2019): Strong convergence of the linear implicit Euler method for the finite element discretization of semilinear SPDEs driven by multiplicative or additive noise Applied Mathematics and Computation,346: 23-40.PUB | DOI | WoS
-
2018 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2959420Mukam, J. D.; Tambue, A. (2018): Convergence and Stability of Split-Step-Theta Methods for Stochastic Differential Equations With Jumps Under Non-Global Lipschitz drift Coefficient. In: Rendiconti Sem. Mat. Univ. Pol. Torino, 76, 2, 165 – 175.PUB | DOI | Download (ext.)
-
2018 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958779Mukam, J. D.; Tambue, A. (2018): Strong Convergence Analysis of the Stochastic Exponential Rosenbrock Scheme for the Finite Element Discretization of Semilinear SPDEs Driven by Multiplicative and Additive Noise Journal of Scientific Computing,74:(2): 937-978.PUB | DOI | WoS
-
2018 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958780Mukam, J. D.; Tambue, A. (2018): A note on exponential Rosenbrock–Euler method for the finite element discretization of a semilinear parabolic partial differential equation Computers & Mathematics with Applications,76:(7): 1719-1738.PUB | DOI | WoS