14 Publikationen
-
2024 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2988848Improved estimates for the sharp interface limit of the stochastic Cahn–Hilliard equation with space-time white noisePUB | DOI | WoS
Banas, Lubomir, Improved estimates for the sharp interface limit of the stochastic Cahn–Hilliard equation with space-time white noise. Interfaces and Free Boundaries, Mathematical Analysis, Computation and Applications (). , 2024 -
2024 | Zeitschriftenaufsatz | E-Veröff. vor dem Druck | PUB-ID: 2986611Weak Convergence of the Rosenbrock Semi-implicit Method for Semilinear Parabolic SPDEs Driven by Additive NoisePUB | DOI | WoS
Mukam, Jean Daniel, Weak Convergence of the Rosenbrock Semi-implicit Method for Semilinear Parabolic SPDEs Driven by Additive Noise. Computational Methods in Applied Mathematics (). , 2024 -
2023 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2968036Weak convergence of the finite element method for semilinear parabolic SPDEs driven by additive noisePUB | DOI | WoS
Tambue, Antoine, Weak convergence of the finite element method for semilinear parabolic SPDEs driven by additive noise. Results in Applied Mathematics 17 (). , 2023 -
2021 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958788Higher order stable schemes for stochastic convection–reaction–diffusion equations driven by additive Wiener noisePUB | PDF | DOI | WoS
Tambue, Antoine, Higher order stable schemes for stochastic convection–reaction–diffusion equations driven by additive Wiener noise. Mathematical Methods in the Applied Sciences (). , 2021 -
2020 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958787Magnus-type integrator for non-autonomous SPDEs driven by multiplicative noisePUB | DOI | WoS
Tambue, Antoine, Magnus-type integrator for non-autonomous SPDEs driven by multiplicative noise. Discrete & Continuous Dynamical Systems - A 40 (8). , 2020 -
2020 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958786Strong convergence of the linear implicit Euler method for the finite element discretization of semilinear non-autonomous SPDEs driven by multiplicative or additive noisePUB | DOI | WoS
Mukam, Jean Daniel, Strong convergence of the linear implicit Euler method for the finite element discretization of semilinear non-autonomous SPDEs driven by multiplicative or additive noise. Applied Numerical Mathematics 147 (). , 2020 -
2020 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958783Optimal error estimate of the finite element approximation of second order semilinear non-autonomous parabolic PDEsPUB | DOI | WoS
Tambue, Antoine, Optimal error estimate of the finite element approximation of second order semilinear non-autonomous parabolic PDEs. Indagationes Mathematicae 31 (4). , 2020 -
2020 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958782Strong convergence of a stochastic Rosenbrock-type scheme for the finite element discretization of semilinear SPDEs driven by multiplicative and additive noisePUB | DOI | WoS
Mukam, Jean Daniel, Strong convergence of a stochastic Rosenbrock-type scheme for the finite element discretization of semilinear SPDEs driven by multiplicative and additive noise. Stochastic Processes and their Applications 130 (8). , 2020 -
2019 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2959421Strong convergence and stability of the semi-tamed and tamed Euler schemes for stochastic differential equations with jumps under non-global Lipschitz conditionPUB | Download (ext.)
Tambue, Antoine, Strong convergence and stability of the semi-tamed and tamed Euler schemes for stochastic differential equations with jumps under non-global Lipschitz condition. Int. J. Numer. Anal. Mod., 16, pp. 847-872 (). , 2019 -
2019 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958781Optimal strong convergence rates of numerical methods for semilinear parabolic SPDE driven by Gaussian noise and Poisson random measurePUB | DOI | WoS
Mukam, Jean Daniel, Optimal strong convergence rates of numerical methods for semilinear parabolic SPDE driven by Gaussian noise and Poisson random measure. Computers & Mathematics with Applications 77 (10). , 2019 -
2019 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958785Strong convergence of the linear implicit Euler method for the finite element discretization of semilinear SPDEs driven by multiplicative or additive noisePUB | DOI | WoS
Tambue, Antoine, Strong convergence of the linear implicit Euler method for the finite element discretization of semilinear SPDEs driven by multiplicative or additive noise. Applied Mathematics and Computation 346 (). , 2019 -
2018 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2959420Convergence and Stability of Split-Step-Theta Methods for Stochastic Differential Equations With Jumps Under Non-Global Lipschitz drift CoefficientPUB | DOI | Download (ext.)
Mukam, Jean Daniel, Convergence and Stability of Split-Step-Theta Methods for Stochastic Differential Equations With Jumps Under Non-Global Lipschitz drift Coefficient. Rendiconti Sem. Mat. Univ. Pol. Torino, 76, 2, 165 – 175 (). , 2018 -
2018 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958779Strong Convergence Analysis of the Stochastic Exponential Rosenbrock Scheme for the Finite Element Discretization of Semilinear SPDEs Driven by Multiplicative and Additive NoisePUB | DOI | WoS
Mukam, Jean Daniel, Strong Convergence Analysis of the Stochastic Exponential Rosenbrock Scheme for the Finite Element Discretization of Semilinear SPDEs Driven by Multiplicative and Additive Noise. Journal of Scientific Computing 74 (2). , 2018 -
2018 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958780A note on exponential Rosenbrock–Euler method for the finite element discretization of a semilinear parabolic partial differential equationPUB | DOI | WoS
Mukam, Jean Daniel, A note on exponential Rosenbrock–Euler method for the finite element discretization of a semilinear parabolic partial differential equation. Computers & Mathematics with Applications 76 (7). , 2018