14 Publikationen
-
2024 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2988848Banas, L., & Mukam, J.D., 2024. Improved estimates for the sharp interface limit of the stochastic Cahn–Hilliard equation with space-time white noise. Interfaces and Free Boundaries, Mathematical Analysis, Computation and Applications.PUB | DOI | WoS
-
-
-
-
-
2020 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958786Mukam, J.D., & Tambue, A., 2020. Strong convergence of the linear implicit Euler method for the finite element discretization of semilinear non-autonomous SPDEs driven by multiplicative or additive noise. Applied Numerical Mathematics, 147, p 222-253.PUB | DOI | WoS
-
-
2020 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958782Mukam, J.D., & Tambue, A., 2020. Strong convergence of a stochastic Rosenbrock-type scheme for the finite element discretization of semilinear SPDEs driven by multiplicative and additive noise. Stochastic Processes and their Applications, 130(8), p 4968-5005.PUB | DOI | WoS
-
2019 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2959421Tambue, A., & Mukam, J.D., 2019. Strong convergence and stability of the semi-tamed and tamed Euler schemes for stochastic differential equations with jumps under non-global Lipschitz condition. Int. J. Numer. Anal. Mod., 16, pp. 847-872.PUB | Download (ext.)
-
2019 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958781Mukam, J.D., & Tambue, A., 2019. Optimal strong convergence rates of numerical methods for semilinear parabolic SPDE driven by Gaussian noise and Poisson random measure. Computers & Mathematics with Applications, 77(10), p 2786-2803.PUB | DOI | WoS
-
2019 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958785Tambue, A., & Mukam, J.D., 2019. Strong convergence of the linear implicit Euler method for the finite element discretization of semilinear SPDEs driven by multiplicative or additive noise. Applied Mathematics and Computation, 346, p 23-40.PUB | DOI | WoS
-
2018 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2959420Mukam, J.D., & Tambue, A., 2018. Convergence and Stability of Split-Step-Theta Methods for Stochastic Differential Equations With Jumps Under Non-Global Lipschitz drift Coefficient. In Rendiconti Sem. Mat. Univ. Pol. Torino, 76, 2, 165 – 175.PUB | DOI | Download (ext.)
-
2018 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958779Mukam, J.D., & Tambue, A., 2018. Strong Convergence Analysis of the Stochastic Exponential Rosenbrock Scheme for the Finite Element Discretization of Semilinear SPDEs Driven by Multiplicative and Additive Noise. Journal of Scientific Computing, 74(2), p 937-978.PUB | DOI | WoS
-
2018 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958780Mukam, J.D., & Tambue, A., 2018. A note on exponential Rosenbrock–Euler method for the finite element discretization of a semilinear parabolic partial differential equation. Computers & Mathematics with Applications, 76(7), p 1719-1738.PUB | DOI | WoS