14 Publikationen
-
2024 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2988848Banas, L., and Mukam, J. D. (2024). Improved estimates for the sharp interface limit of the stochastic Cahn–Hilliard equation with space-time white noise. Interfaces and Free Boundaries, Mathematical Analysis, Computation and Applications.PUB | DOI | WoS
-
-
-
-
-
2020 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958786Mukam, J. D., and Tambue, A. (2020). Strong convergence of the linear implicit Euler method for the finite element discretization of semilinear non-autonomous SPDEs driven by multiplicative or additive noise. Applied Numerical Mathematics 147, 222-253.PUB | DOI | WoS
-
-
2020 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958782Mukam, J. D., and Tambue, A. (2020). Strong convergence of a stochastic Rosenbrock-type scheme for the finite element discretization of semilinear SPDEs driven by multiplicative and additive noise. Stochastic Processes and their Applications 130, 4968-5005.PUB | DOI | WoS
-
2019 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2959421Tambue, A., and Mukam, J. D. (2019). Strong convergence and stability of the semi-tamed and tamed Euler schemes for stochastic differential equations with jumps under non-global Lipschitz condition. Int. J. Numer. Anal. Mod., 16, pp. 847-872.PUB | Download (ext.)
-
2019 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958781Mukam, J. D., and Tambue, A. (2019). Optimal strong convergence rates of numerical methods for semilinear parabolic SPDE driven by Gaussian noise and Poisson random measure. Computers & Mathematics with Applications 77, 2786-2803.PUB | DOI | WoS
-
2019 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958785Tambue, A., and Mukam, J. D. (2019). Strong convergence of the linear implicit Euler method for the finite element discretization of semilinear SPDEs driven by multiplicative or additive noise. Applied Mathematics and Computation 346, 23-40.PUB | DOI | WoS
-
2018 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2959420Mukam, J. D., and Tambue, A. (2018). “Convergence and Stability of Split-Step-Theta Methods for Stochastic Differential Equations With Jumps Under Non-Global Lipschitz drift Coefficient” in Rendiconti Sem. Mat. Univ. Pol. Torino, 76, 2, 165 – 175.PUB | DOI | Download (ext.)
-
2018 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958779Mukam, J. D., and Tambue, A. (2018). Strong Convergence Analysis of the Stochastic Exponential Rosenbrock Scheme for the Finite Element Discretization of Semilinear SPDEs Driven by Multiplicative and Additive Noise. Journal of Scientific Computing 74, 937-978.PUB | DOI | WoS
-
2018 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958780Mukam, J. D., and Tambue, A. (2018). A note on exponential Rosenbrock–Euler method for the finite element discretization of a semilinear parabolic partial differential equation. Computers & Mathematics with Applications 76, 1719-1738.PUB | DOI | WoS