Strong convergence of the linear implicit Euler method for the finite element discretization of semilinear non-autonomous SPDEs driven by multiplicative or additive noise

Mukam JD, Tambue A (2020)
Applied Numerical Mathematics 147: 222-253.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Mukam, Jean DanielUniBi; Tambue, Antoine
Erscheinungsjahr
2020
Zeitschriftentitel
Applied Numerical Mathematics
Band
147
Seite(n)
222-253
ISSN
01689274
Page URI
https://pub.uni-bielefeld.de/record/2958786

Zitieren

Mukam JD, Tambue A. Strong convergence of the linear implicit Euler method for the finite element discretization of semilinear non-autonomous SPDEs driven by multiplicative or additive noise. Applied Numerical Mathematics. 2020;147:222-253.
Mukam, J. D., & Tambue, A. (2020). Strong convergence of the linear implicit Euler method for the finite element discretization of semilinear non-autonomous SPDEs driven by multiplicative or additive noise. Applied Numerical Mathematics, 147, 222-253. https://doi.org/10.1016/j.apnum.2019.08.009
Mukam, J. D., and Tambue, A. (2020). Strong convergence of the linear implicit Euler method for the finite element discretization of semilinear non-autonomous SPDEs driven by multiplicative or additive noise. Applied Numerical Mathematics 147, 222-253.
Mukam, J.D., & Tambue, A., 2020. Strong convergence of the linear implicit Euler method for the finite element discretization of semilinear non-autonomous SPDEs driven by multiplicative or additive noise. Applied Numerical Mathematics, 147, p 222-253.
J.D. Mukam and A. Tambue, “Strong convergence of the linear implicit Euler method for the finite element discretization of semilinear non-autonomous SPDEs driven by multiplicative or additive noise”, Applied Numerical Mathematics, vol. 147, 2020, pp. 222-253.
Mukam, J.D., Tambue, A.: Strong convergence of the linear implicit Euler method for the finite element discretization of semilinear non-autonomous SPDEs driven by multiplicative or additive noise. Applied Numerical Mathematics. 147, 222-253 (2020).
Mukam, Jean Daniel, and Tambue, Antoine. “Strong convergence of the linear implicit Euler method for the finite element discretization of semilinear non-autonomous SPDEs driven by multiplicative or additive noise”. Applied Numerical Mathematics 147 (2020): 222-253.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Suchen in

Google Scholar