14 Publikationen
-
2024 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2988848Banas, L., & Mukam, J. D. (2024). Improved estimates for the sharp interface limit of the stochastic Cahn–Hilliard equation with space-time white noise. Interfaces and Free Boundaries, Mathematical Analysis, Computation and Applications. https://doi.org/10.4171/ifb/518PUB | DOI | WoS
-
2024 | Zeitschriftenaufsatz | E-Veröff. vor dem Druck | PUB-ID: 2986611Mukam, J. D., & Tambue, A. (2024). Weak Convergence of the Rosenbrock Semi-implicit Method for Semilinear Parabolic SPDEs Driven by Additive Noise. Computational Methods in Applied Mathematics. https://doi.org/10.1515/cmam-2023-0055PUB | DOI | WoS
-
2023 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2968036Tambue, A., & Mukam, J. D. (2023). Weak convergence of the finite element method for semilinear parabolic SPDEs driven by additive noise. Results in Applied Mathematics, 17, 100351. https://doi.org/10.1016/j.rinam.2022.100351PUB | DOI | WoS
-
2021 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958788Tambue, A., & Mukam, J. D. (2021). Higher order stable schemes for stochastic convection–reaction–diffusion equations driven by additive Wiener noise. Mathematical Methods in the Applied Sciences, mma.7588. https://doi.org/10.1002/mma.7588PUB | PDF | DOI | WoS
-
2020 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958787Tambue, A., & Mukam, J. D. (2020). Magnus-type integrator for non-autonomous SPDEs driven by multiplicative noise. Discrete & Continuous Dynamical Systems - A, 40(8), 4597-4624. https://doi.org/10.3934/dcds.2020194PUB | DOI | WoS
-
2020 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958786Mukam, J. D., & Tambue, A. (2020). Strong convergence of the linear implicit Euler method for the finite element discretization of semilinear non-autonomous SPDEs driven by multiplicative or additive noise. Applied Numerical Mathematics, 147, 222-253. https://doi.org/10.1016/j.apnum.2019.08.009PUB | DOI | WoS
-
2020 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958783Tambue, A., & Mukam, J. D. (2020). Optimal error estimate of the finite element approximation of second order semilinear non-autonomous parabolic PDEs. Indagationes Mathematicae, 31(4), 714-727. https://doi.org/10.1016/j.indag.2020.06.008PUB | DOI | WoS
-
2020 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958782Mukam, J. D., & Tambue, A. (2020). Strong convergence of a stochastic Rosenbrock-type scheme for the finite element discretization of semilinear SPDEs driven by multiplicative and additive noise. Stochastic Processes and their Applications, 130(8), 4968-5005. https://doi.org/10.1016/j.spa.2020.02.008PUB | DOI | WoS
-
2019 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2959421Tambue, A., & Mukam, J. D. (2019). Strong convergence and stability of the semi-tamed and tamed Euler schemes for stochastic differential equations with jumps under non-global Lipschitz condition. Int. J. Numer. Anal. Mod., 16, pp. 847-872PUB | Download (ext.)
-
2019 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958781Mukam, J. D., & Tambue, A. (2019). Optimal strong convergence rates of numerical methods for semilinear parabolic SPDE driven by Gaussian noise and Poisson random measure. Computers & Mathematics with Applications, 77(10), 2786-2803. https://doi.org/10.1016/j.camwa.2019.01.011PUB | DOI | WoS
-
2019 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958785Tambue, A., & Mukam, J. D. (2019). Strong convergence of the linear implicit Euler method for the finite element discretization of semilinear SPDEs driven by multiplicative or additive noise. Applied Mathematics and Computation, 346, 23-40. https://doi.org/10.1016/j.amc.2018.09.073PUB | DOI | WoS
-
2018 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2959420Mukam, J. D., & Tambue, A. (2018). Convergence and Stability of Split-Step-Theta Methods for Stochastic Differential Equations With Jumps Under Non-Global Lipschitz drift Coefficient. Rendiconti Sem. Mat. Univ. Pol. Torino, 76, 2, 165 – 175. https://doi.org/http://www.seminariomatematico.polito.it/rendiconti/76-2/165.pdfPUB | DOI | Download (ext.)
-
2018 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958779Mukam, J. D., & Tambue, A. (2018). Strong Convergence Analysis of the Stochastic Exponential Rosenbrock Scheme for the Finite Element Discretization of Semilinear SPDEs Driven by Multiplicative and Additive Noise. Journal of Scientific Computing, 74(2), 937-978. https://doi.org/10.1007/s10915-017-0475-yPUB | DOI | WoS
-
2018 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958780Mukam, J. D., & Tambue, A. (2018). A note on exponential Rosenbrock–Euler method for the finite element discretization of a semilinear parabolic partial differential equation. Computers & Mathematics with Applications, 76(7), 1719-1738. https://doi.org/10.1016/j.camwa.2018.07.025PUB | DOI | WoS