Targeted in situ metatranscriptomics for selected taxa from mesophilic and thermophilic biogas plants

Stolze Y, Bremges A, Maus I, Pühler A, Sczyrba A, Schlüter A (2018)
Microbial Biotechnology 11(4): 667-679.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Biogas production is performed anaerobically by complex microbial communities with key species driving the process. Hence, analyses of their insitu activities are crucial to understand the process. In a previous study, metagenome sequencing and subsequent genome binning for different production-scale biogas plants (BGPs) resulted in four genome bins of special interest, assigned to the phyla Thermotogae, Fusobacteria, Spirochaetes and Cloacimonetes, respectively, that were genetically analysed. In this study, metatranscriptome sequencing of the same BGP samples was conducted, enabling insitu transcriptional activity determination of these genome bins. For this, mapping of metatranscriptome reads on genome bin sequences was performed providing transcripts per million (TPM) values for each gene. This approach revealed an active sugar-based metabolism of the Thermotogae and Spirochaetes bins and an active amino acid-based metabolism of the Fusobacteria and Cloacimonetes bins. The data also hint at syntrophic associations of the four corresponding species with methanogenic Archaea. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Erscheinungsjahr
2018
Zeitschriftentitel
Microbial Biotechnology
Band
11
Ausgabe
4
Seite(n)
667-679
ISSN
1751-7915
Page URI
https://pub.uni-bielefeld.de/record/2916929

Zitieren

Stolze Y, Bremges A, Maus I, Pühler A, Sczyrba A, Schlüter A. Targeted in situ metatranscriptomics for selected taxa from mesophilic and thermophilic biogas plants. Microbial Biotechnology. 2018;11(4):667-679.
Stolze, Y., Bremges, A., Maus, I., Pühler, A., Sczyrba, A., & Schlüter, A. (2018). Targeted in situ metatranscriptomics for selected taxa from mesophilic and thermophilic biogas plants. Microbial Biotechnology, 11(4), 667-679. doi:10.1111/1751-7915.12982
Stolze, Yvonne, Bremges, Andreas, Maus, Irena, Pühler, Alfred, Sczyrba, Alexander, and Schlüter, Andreas. 2018. “Targeted in situ metatranscriptomics for selected taxa from mesophilic and thermophilic biogas plants”. Microbial Biotechnology 11 (4): 667-679.
Stolze, Y., Bremges, A., Maus, I., Pühler, A., Sczyrba, A., and Schlüter, A. (2018). Targeted in situ metatranscriptomics for selected taxa from mesophilic and thermophilic biogas plants. Microbial Biotechnology 11, 667-679.
Stolze, Y., et al., 2018. Targeted in situ metatranscriptomics for selected taxa from mesophilic and thermophilic biogas plants. Microbial Biotechnology, 11(4), p 667-679.
Y. Stolze, et al., “Targeted in situ metatranscriptomics for selected taxa from mesophilic and thermophilic biogas plants”, Microbial Biotechnology, vol. 11, 2018, pp. 667-679.
Stolze, Y., Bremges, A., Maus, I., Pühler, A., Sczyrba, A., Schlüter, A.: Targeted in situ metatranscriptomics for selected taxa from mesophilic and thermophilic biogas plants. Microbial Biotechnology. 11, 667-679 (2018).
Stolze, Yvonne, Bremges, Andreas, Maus, Irena, Pühler, Alfred, Sczyrba, Alexander, and Schlüter, Andreas. “Targeted in situ metatranscriptomics for selected taxa from mesophilic and thermophilic biogas plants”. Microbial Biotechnology 11.4 (2018): 667-679.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):

Link(s) zu Volltext(en)
Access Level
OA Open Access

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Targeted in situ metatranscriptomics for selected taxa from mesophilic and thermophilic biogas plants.
Stolze Y, Bremges A, Maus I, Pühler A, Sczyrba A, Schlüter A., Microb Biotechnol 11(4), 2018
PMID: 29205917
Microbial Community Changes in a Chlorinated Solvents Polluted Aquifer Over the Field Scale Treatment With Poly-3-Hydroxybutyrate as Amendment.
Matturro B, Pierro L, Frascadore E, Petrangeli Papini M, Rossetti S., Front Microbiol 9(), 2018
PMID: 30087670
The Microbiome of the Gastrointestinal Tract of a Range-Shifting Marine Herbivorous Fish.
Jones J, DiBattista JD, Stat M, Bunce M, Boyce MC, Fairclough DV, Travers MJ, Huggett MJ., Front Microbiol 9(), 2018
PMID: 30210475

43 References

Daten bereitgestellt von Europe PubMed Central.

Quantitative approaches to the study of bistability in the lac operon of Escherichia coli.
Santillan M, Mackey MC., J R Soc Interface 5 Suppl 1(), 2008
PMID: 18426771
Near-optimal probabilistic RNA-seq quantification.
Bray NL, Pimentel H, Melsted P, Pachter L., Nat. Biotechnol. 34(5), 2016
PMID: 27043002
Degradation efficiency of agricultural biogas plants--a full-scale study.
Ruile S, Schmitz S, Monch-Tegeder M, Oechsner H., Bioresour. Technol. 178(), 2014
PMID: 25453437
Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing.
Zakrzewski M, Goesmann A, Jaenicke S, Junemann S, Eikmeyer F, Szczepanowski R, Al-Soud WA, Sorensen S, Puhler A, Schluter A., J. Biotechnol. 158(4), 2012
PMID: 22342600
Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal.
Verhaart MR, Bielen AA, van der Oost J, Stams AJ, Kengen SW., Environ Technol 31(8-9), 2010
PMID: 20662387
Targeted in situ metatranscriptomics for selected taxa from mesophilic and thermophilic biogas plants.
Stolze Y, Bremges A, Maus I, Puhler A, Sczyrba A, Schluter A., Microb Biotechnol 11(4), 2017
PMID: 29205917
Structure, function, and evolution of bacterial ATP-binding cassette systems.
Davidson AL, Dassa E, Orelle C, Chen J., Microbiol. Mol. Biol. Rev. 72(2), 2008
PMID: 18535149
dbCAN: a web resource for automated carbohydrate-active enzyme annotation.
Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y., Nucleic Acids Res. 40(Web Server issue), 2012
PMID: 22645317
Biogas production: current state and perspectives.
Weiland P., Appl. Microbiol. Biotechnol. 85(4), 2009
PMID: 19777226
Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation.
Sieber JR, McInerney MJ, Gunsalus RP., Annu. Rev. Microbiol. 66(), 2012
PMID: 22803797
Identification and genome reconstruction of abundant distinct taxa in microbiomes from one thermophilic and three mesophilic production-scale biogas plants.
Stolze Y, Bremges A, Rumming M, Henke C, Maus I, Puhler A, Sczyrba A, Schluter A., Biotechnol Biofuels 9(), 2016
PMID: 27462367
Classification of metagenomic sequences: methods and challenges.
Mande SS, Mohammed MH, Ghosh TS., Brief. Bioinformatics 13(6), 2012
PMID: 22962338
The Thermotoga maritima phenotype is impacted by syntrophic interaction with Methanococcus jannaschii in hyperthermophilic coculture.
Johnson MR, Conners SB, Montero CI, Chou CJ, Shockley KR, Kelly RM., Appl. Environ. Microbiol. 72(1), 2006
PMID: 16391122
Local gene regulation details a recognition code within the LacI transcriptional factor family.
Camas FM, Alm EJ, Poyatos JF., PLoS Comput. Biol. 6(11), 2010
PMID: 21085639
Bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase.
Biegel E, Muller V., Proc. Natl. Acad. Sci. U.S.A. 107(42), 2010
PMID: 20921383
Detailed analysis of metagenome datasets obtained from biogas-producing microbial communities residing in biogas reactors does not indicate the presence of putative pathogenic microorganisms.
Eikmeyer FG, Rademacher A, Hanreich A, Hennig M, Jaenicke S, Maus I, Wibberg D, Zakrzewski M, Puhler A, Klocke M, Schluter A., Biotechnol Biofuels 6(1), 2013
PMID: 23557021
Deeply sequenced metagenome and metatranscriptome of a biogas-producing microbial community from an agricultural production-scale biogas plant.
Bremges A, Maus I, Belmann P, Eikmeyer F, Winkler A, Albersmeier A, Puhler A, Schluter A, Sczyrba A., Gigascience 4(), 2015
PMID: 26229594
Bacterial chemoreceptors and chemoeffectors.
Bi S, Lai L., Cell. Mol. Life Sci. 72(4), 2014
PMID: 25374297
Syntrophic growth of Desulfovibrio alaskensis requires genes for H2 and formate metabolism as well as those for flagellum and biofilm formation.
Krumholz LR, Bradstock P, Sheik CS, Diao Y, Gazioglu O, Gorby Y, McInerney MJ., Appl. Environ. Microbiol. 81(7), 2015
PMID: 25616787
Complete genome sequence of the strain Defluviitoga tunisiensis L3, isolated from a thermophilic, production-scale biogas plant.
Maus I, Cibis KG, Wibberg D, Winkler A, Stolze Y, Konig H, Puhler A, Schluter A., J. Biotechnol. 203(), 2015
PMID: 25801333
Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates.
Maus I, Koeck DE, Cibis KG, Hahnke S, Kim YS, Langer T, Kreubel J, Erhard M, Bremges A, Off S, Stolze Y, Jaenicke S, Goesmann A, Sczyrba A, Scherer P, Konig H, Schwarz WH, Zverlov VV, Liebl W, Puhler A, Schluter A, Klocke M., Biotechnol Biofuels 9(), 2016
PMID: 27525040
Cellular adhesiveness and cellulolytic capacity in Anaerolineae revealed by omics-based genome interpretation.
Xia Y, Wang Y, Wang Y, Chin FY, Zhang T., Biotechnol Biofuels 9(), 2016
PMID: 27222666
Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions.
Stolze Y, Zakrzewski M, Maus I, Eikmeyer F, Jaenicke S, Rottmann N, Siebner C, Puhler A, Schluter A., Biotechnol Biofuels 8(), 2015
PMID: 25688290
Trends in Global Greenhouse Gas Emissions from 1990 to 2010.
Malik A, Lan J, Lenzen M., Environ. Sci. Technol. 50(9), 2016
PMID: 27063930
Chemotaxis Control of Transient Cell Aggregation.
Alexandre G., J. Bacteriol. 197(20), 2015
PMID: 26216846
Critical Assessment of Metagenome Interpretation-a benchmark of metagenomics software.
Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Droge J, Gregor I, Majda S, Fiedler J, Dahms E, Bremges A, Fritz A, Garrido-Oter R, Jorgensen TS, Shapiro N, Blood PD, Gurevich A, Bai Y, Turaev D, DeMaere MZ, Chikhi R, Nagarajan N, Quince C, Meyer F, Balvociute M, Hansen LH, Sorensen SJ, Chia BKH, Denis B, Froula JL, Wang Z, Egan R, Don Kang D, Cook JJ, Deltel C, Beckstette M, Lemaitre C, Peterlongo P, Rizk G, Lavenier D, Wu YW, Singer SW, Jain C, Strous M, Klingenberg H, Meinicke P, Barton MD, Lingner T, Lin HH, Liao YC, Silva GGZ, Cuevas DA, Edwards RA, Saha S, Piro VC, Renard BY, Pop M, Klenk HP, Goker M, Kyrpides NC, Woyke T, Vorholt JA, Schulze-Lefert P, Rubin EM, Darling AE, Rattei T, McHardy AC., Nat. Methods 14(11), 2017
PMID: 28967888
Metagenomics and CAZyme Discovery.
Kunath BJ, Bremges A, Weimann A, McHardy AC, Pope PB., Methods Mol. Biol. 1588(), 2017
PMID: 28417375
Recovering complete and draft population genomes from metagenome datasets.
Sangwan N, Xia F, Gilbert JA., Microbiome 4(), 2016
PMID: 26951112
Genome-centric resolution of microbial diversity, metabolism and interactions in anaerobic digestion.
Vanwonterghem I, Jensen PD, Rabaey K, Tyson GW., Environ. Microbiol. 18(9), 2016
PMID: 27317862
An introduction to the analysis of shotgun metagenomic data.
Sharpton TJ., Front Plant Sci 5(), 2014
PMID: 24982662
Biofuels from food processing wastes.
Zhang Z, O'Hara IM, Mundree S, Gao B, Ball AS, Zhu N, Bai Z, Jin B., Curr. Opin. Biotechnol. 38(), 2016
PMID: 26874262
Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy.
Campanaro S, Treu L, Kougias PG, De Francisci D, Valle G, Angelidaki I., Biotechnol Biofuels 9(), 2016
PMID: 26839589
Bacterial chemotaxis: information processing, thermodynamics, and behavior.
Micali G, Endres RG., Curr. Opin. Microbiol. 30(), 2015
PMID: 26731482
Diversity of the resident microbiota in a thermophilic municipal biogas plant.
Weiss A, Jerome V, Freitag R, Mayer HK., Appl. Microbiol. Biotechnol. 81(1), 2008
PMID: 18820906
Fuelling the future: microbial engineering for the production of sustainable biofuels.
Liao JC, Mi L, Pontrelli S, Luo S., Nat. Rev. Microbiol. 14(5), 2016
PMID: 27026253
A genomic view on syntrophic versus non-syntrophic lifestyle in anaerobic fatty acid degrading communities.
Worm P, Koehorst JJ, Visser M, Sedano-Nunez VT, Schaap PJ, Plugge CM, Sousa DZ, Stams AJM., Biochim. Biophys. Acta 1837(12), 2014
PMID: 24973598
Syntrophy in anaerobic global carbon cycles.
McInerney MJ, Sieber JR, Gunsalus RP., Curr. Opin. Biotechnol. 20(6), 2009
PMID: 19897353
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 29205917
PubMed | Europe PMC

Suchen in

Google Scholar