18 Publikationen
-
2021 | Bielefelder E-Dissertation | PUB-ID: 2956362Hosseini, B. (2021). Interpretable analysis of motion data. Bielefeld: Universität Bielefeld. https://doi.org/10.4119/unibi/2956362
-
2019 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982082Hosseini, B., & Hammer, B. (2019). Large-Margin Multiple Kernel Learning for Discriminative Features Selection and Representation Learning. 2019 International Joint Conference on Neural Networks (IJCNN), 1-8. IEEE. https://doi.org/10.1109/IJCNN.2019.8851982
-
-
2019 | Konferenzbeitrag | Angenommen | PUB-ID: 2937841Hosseini, B., & Hammer, B. (Accepted). Interpretable Multiple-Kernel Prototype Learning for Discriminative Representation and Feature Selection. Presented at the The 28th ACM International Conference on Information and Knowledge Management (CIKM) , Beijing.
-
2019 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2937839Hosseini, B., & Hammer, B. (2019). Interpretable Discriminative Dimensionality Reduction and Feature Selection on the Manifold. Presented at the 2019 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML), Würzburg.
-
2019 | Konferenzbeitrag | PUB-ID: 2930303Hosseini, B., & Hammer, B. (2019). Multiple-Kernel Dictionary Learning for Reconstruction and Clustering of Unseen Multivariate Time-series. In M. Verleysen (Ed.), Proceedings of the 27th European Symposium on Artificial Neural Networks (ESANN 2019)
-
-
2018 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982090Hosseini, B., & Hammer, B. (2018). Non-negative Local Sparse Coding for Subspace Clustering. In W. Duivesteijn, A. Siebes, & A. Ukkonen (Eds.), Lecture Notes in Computer Science. Advances in Intelligent Data Analysis XVII. 17th International Symposium, IDA 2018, ’s-Hertogenbosch, The Netherlands, October 24–26, 2018, Proceedings (pp. 137-150). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-01768-2_12
-
2018 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982087Hosseini, B., & Hammer, B. (2018). Confident Kernel Sparse Coding and Dictionary Learning. 2018 IEEE International Conference on Data Mining (ICDM), 1031-1036. IEEE. https://doi.org/10.1109/ICDM.2018.00130
-
2018 | Preprint | Veröffentlicht | PUB-ID: 2921209Hosseini, B., & Hammer, B. (2018). Non-Negative Local Sparse Coding for Subspace Clustering. Advances in Intelligent Data Analysis XVII. IDA 2018
-
-
2018 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2919598Hosseini, B., & Hammer, B. (2018). Feasibility Based Large Margin Nearest Neighbor Metric Learning. ESANN 2018. Proceedings of 26th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 219-224.
-
-
-
2016 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2904469Hosseini, B., Hülsmann, F., Botsch, M., & Hammer, B. (2016). Non-Negative Kernel Sparse Coding for the Analysis of Motion Data. In A. E.P. Villa, P. Masulli, & A. Javier Pons Rivero (Eds.), Lecture Notes in Computer Science: Vol. 9887. Artificial Neural Networks and Machine Learning – ICANN 2016 (pp. 506-514). Cham: Springer. https://doi.org/10.1007/978-3-319-44781-0_60
-
2015 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2783165Hosseini, B., & Hammer, B. (2015). Efficient Metric Learning for the Analysis of Motion Data. 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA) Piscataway, NJ: IEEE. doi:10.1109/DSAA.2015.7344819
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2914986Hosseini, B., Ahmadabadi, M. N., & Araabi, B. N. (2010). Abstract Concept Learning Approach Based on Behavioural Feature Extraction. In J. Kamaruzaman (Ed.), 2009 Second International Conference on Computer and Electrical Engineering (Vol. 2). Piscataway, NJ: IEEE. doi:10.1109/iccee.2009.223
-
2008 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2914988Jamali, M. R., Arami, A., Hosseini, B., Moshiri, B., & Lukas, C. (2008). Real Time Emotional Control for Anti-Swing and Positioning Control of SIMO Overhead Traveling Crane. International Journal of Innovative Computing, Information, and Control, 4(9), 2333-2344.