Analysis of local genome rearrangement improves resolution of ancestral genomic maps in plants
Rubert D, Martinez FHV, Stoye J, Dörr D (2020)
BMC Genomics 21(Suppl. 2): 273.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
s12864-020-6609-x.doerr.pdf
1.77 MB
Autor*in
Einrichtung
Abstract / Bemerkung
Background
Computationally inferred ancestral genomes play an important role in many areas of genome research. We present an improved workflow for the reconstruction from highly diverged genomes such as those of plants.
Results
Our work relies on an established workflow in the reconstruction of ancestral plants, but improves several steps of this process. Instead of using gene annotations for inferring the genome content of the ancestral sequence, we identify genomic markers through a process called genome segmentation. This enables us to reconstruct the ancestral genome from hundreds of thousands of markers rather than the tens of thousands of annotated genes. We also introduce the concept of local genome rearrangement, through which we refine syntenic blocks before they are used in the reconstruction of contiguous ancestral regions. With the enhanced workflow at hand, we reconstruct the ancestral genome of eudicots, a major sub-clade of flowering plants, using whole genome sequences of five modern plants.
Conclusions
Our reconstructed genome is highly detailed, yet its layout agrees well with that reported in Badouin et al. (2017). Using local genome rearrangement, not only the marker-based, but also the gene-based reconstruction of the eudicot ancestor exhibited increased genome content, evidencing the power of this novel concept.
Erscheinungsjahr
2020
Zeitschriftentitel
BMC Genomics
Band
21
Ausgabe
Suppl. 2
Art.-Nr.
273
Urheberrecht / Lizenzen
eISSN
1471-2164
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2937712
Zitieren
Rubert D, Martinez FHV, Stoye J, Dörr D. Analysis of local genome rearrangement improves resolution of ancestral genomic maps in plants. BMC Genomics. 2020;21(Suppl. 2): 273.
Rubert, D., Martinez, F. H. V., Stoye, J., & Dörr, D. (2020). Analysis of local genome rearrangement improves resolution of ancestral genomic maps in plants. BMC Genomics, 21(Suppl. 2), 273. https://doi.org/10.1186/s12864-020-6609-x
Rubert, Diego, Martinez, Fábio Henrique Viduani, Stoye, Jens, and Dörr, Daniel. 2020. “Analysis of local genome rearrangement improves resolution of ancestral genomic maps in plants”. BMC Genomics 21 (Suppl. 2): 273.
Rubert, D., Martinez, F. H. V., Stoye, J., and Dörr, D. (2020). Analysis of local genome rearrangement improves resolution of ancestral genomic maps in plants. BMC Genomics 21:273.
Rubert, D., et al., 2020. Analysis of local genome rearrangement improves resolution of ancestral genomic maps in plants. BMC Genomics, 21(Suppl. 2): 273.
D. Rubert, et al., “Analysis of local genome rearrangement improves resolution of ancestral genomic maps in plants”, BMC Genomics, vol. 21, 2020, : 273.
Rubert, D., Martinez, F.H.V., Stoye, J., Dörr, D.: Analysis of local genome rearrangement improves resolution of ancestral genomic maps in plants. BMC Genomics. 21, : 273 (2020).
Rubert, Diego, Martinez, Fábio Henrique Viduani, Stoye, Jens, and Dörr, Daniel. “Analysis of local genome rearrangement improves resolution of ancestral genomic maps in plants”. BMC Genomics 21.Suppl. 2 (2020): 273.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
s12864-020-6609-x.doerr.pdf
1.77 MB
Access Level
Open Access
Zuletzt Hochgeladen
2020-04-23T09:15:30Z
MD5 Prüfsumme
7ad52fd6a734fd1d12e97f40af7b80d5
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 32299356
PubMed | Europe PMC
Suchen in