Motor flexibility in insects: Adaptive coordination of limbs in locomotion and near-range exploration
Dürr V, Theunissen L, Dallmann C, Hoinville T, Schmitz J (2018)
Behav. Ecol. Sociobiol. 72(1): 15.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Forschungsgruppe
Embodied Interaction as a Core of Cognitive Interaction: A holistic approach towards autonomous walking system
Abstract / Bemerkung
In recent years, research on insect motor behaviour - locomotion in particular - has provided a number of important new insights, many of which became possible because of methodological advances in motion capture of unrestrained moving insects. Behavioural analyses have not only backed-up neurophysiological analyses of the underlying mechanisms at work, they have also highlighted the complexity and variability of leg movements in naturalistic, unrestrained behaviour. Here, we argue that the variability of unrestrained motor behaviour should be considered a sign of behavioural flexibility. Assuming that variation of movement-related parameters is governed by neural mechanisms, behavioural analyses can complement neurophysiological investigations, for example by (i) dissociating distinct movement episodes based on functional and statistical grounds, (ii) quantifying when and how transitions between movement episodes occur, and (iii) dissociating temporal and spatial coordination. The present review emphasizes the importance of considering the functional diversity of limb movements in insect behaviour. In particular, we highlight the fundamental difference between leg movements that generate interaction forces as opposed to those that do not. On that background, we discuss the spatially continuous modulation of swing movements and the quasi-rhythmic nature of stepping across insect orders. Based on examples of motor flexibility in stick insects, we illustrate the relevance of behaviour-based approaches for computational modelling of a rich and adaptive movement repertoire. Finally, we emphasize the intimate interplay of locomotion and near-range exploration. We propose that this interplay, through continuous integration of distributed, multimodal sensory feedback, is key to locomotor flexibility.
Erscheinungsjahr
2018
Zeitschriftentitel
Behav. Ecol. Sociobiol.
Band
72
Ausgabe
1
Art.-Nr.
15
ISSN
0340-5443
eISSN
1432-0762
Page URI
https://pub.uni-bielefeld.de/record/2915649
Zitieren
Dürr V, Theunissen L, Dallmann C, Hoinville T, Schmitz J. Motor flexibility in insects: Adaptive coordination of limbs in locomotion and near-range exploration. Behav. Ecol. Sociobiol. 2018;72(1): 15.
Dürr, V., Theunissen, L., Dallmann, C., Hoinville, T., & Schmitz, J. (2018). Motor flexibility in insects: Adaptive coordination of limbs in locomotion and near-range exploration. Behav. Ecol. Sociobiol., 72(1), 15. https://doi.org/10.1007/s00265-017-2412-3
Dürr, Volker, Theunissen, Leslie, Dallmann, Chris, Hoinville, Thierry, and Schmitz, Josef. 2018. “Motor flexibility in insects: Adaptive coordination of limbs in locomotion and near-range exploration”. Behav. Ecol. Sociobiol. 72 (1): 15.
Dürr, V., Theunissen, L., Dallmann, C., Hoinville, T., and Schmitz, J. (2018). Motor flexibility in insects: Adaptive coordination of limbs in locomotion and near-range exploration. Behav. Ecol. Sociobiol. 72:15.
Dürr, V., et al., 2018. Motor flexibility in insects: Adaptive coordination of limbs in locomotion and near-range exploration. Behav. Ecol. Sociobiol., 72(1): 15.
V. Dürr, et al., “Motor flexibility in insects: Adaptive coordination of limbs in locomotion and near-range exploration”, Behav. Ecol. Sociobiol., vol. 72, 2018, : 15.
Dürr, V., Theunissen, L., Dallmann, C., Hoinville, T., Schmitz, J.: Motor flexibility in insects: Adaptive coordination of limbs in locomotion and near-range exploration. Behav. Ecol. Sociobiol. 72, : 15 (2018).
Dürr, Volker, Theunissen, Leslie, Dallmann, Chris, Hoinville, Thierry, and Schmitz, Josef. “Motor flexibility in insects: Adaptive coordination of limbs in locomotion and near-range exploration”. Behav. Ecol. Sociobiol. 72.1 (2018): 15.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in