A load-based mechanism for inter-leg coordination in insects

Dallmann C, Hoinville T, Dürr V, Schmitz J (2017)
Proceedings of the Royal Society B: Biological Sciences 284(1868): 20171755.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Forschungsgruppe
Embodied Interaction as a Core of Cognitive Interaction: A holistic approach towards autonomous walking system
Abstract / Bemerkung
Animals rely on an adaptive coordination of legs during walking. However, which specific mechanisms underlie coordination during natural locomotion remains largely unknown. One hypothesis is that legs can be coordinated mechanically based on a transfer of body load from one leg to another. To test this hypothesis, we simultaneously recorded leg kinematics, ground reaction forces and muscle activity in freely walking stick insects (Carausius morosus). Based on torque calculations, we show that load sensors (campaniform sensilla) at the proximal leg joints are well suited to encode the unloading of the leg in individual steps. The unloading coincides with a switch from stance to swing muscle activity, consistent with a load reflex promoting the stance-to-swing transition. Moreover, a mechanical simulation reveals that the unloading can be ascribed to the loading of a specific neighboring leg, making it exploitable for inter-leg coordination. We propose that mechanically mediated load-based coordination is used across insects analogously to mammals.
Erscheinungsjahr
2017
Zeitschriftentitel
Proceedings of the Royal Society B: Biological Sciences
Band
284
Ausgabe
1868
Art.-Nr.
20171755
ISSN
0962-8452
eISSN
1471-2954
Page URI
https://pub.uni-bielefeld.de/record/2915640

Zitieren

Dallmann C, Hoinville T, Dürr V, Schmitz J. A load-based mechanism for inter-leg coordination in insects. Proceedings of the Royal Society B: Biological Sciences. 2017;284(1868): 20171755.
Dallmann, C., Hoinville, T., Dürr, V., & Schmitz, J. (2017). A load-based mechanism for inter-leg coordination in insects. Proceedings of the Royal Society B: Biological Sciences, 284(1868), 20171755. https://doi.org/10.1098/rspb.2017.1755
Dallmann, Chris, Hoinville, Thierry, Dürr, Volker, and Schmitz, Josef. 2017. “A load-based mechanism for inter-leg coordination in insects”. Proceedings of the Royal Society B: Biological Sciences 284 (1868): 20171755.
Dallmann, C., Hoinville, T., Dürr, V., and Schmitz, J. (2017). A load-based mechanism for inter-leg coordination in insects. Proceedings of the Royal Society B: Biological Sciences 284:20171755.
Dallmann, C., et al., 2017. A load-based mechanism for inter-leg coordination in insects. Proceedings of the Royal Society B: Biological Sciences, 284(1868): 20171755.
C. Dallmann, et al., “A load-based mechanism for inter-leg coordination in insects”, Proceedings of the Royal Society B: Biological Sciences, vol. 284, 2017, : 20171755.
Dallmann, C., Hoinville, T., Dürr, V., Schmitz, J.: A load-based mechanism for inter-leg coordination in insects. Proceedings of the Royal Society B: Biological Sciences. 284, : 20171755 (2017).
Dallmann, Chris, Hoinville, Thierry, Dürr, Volker, and Schmitz, Josef. “A load-based mechanism for inter-leg coordination in insects”. Proceedings of the Royal Society B: Biological Sciences 284.1868 (2017): 20171755.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):

Link(s) zu Volltext(en)
Access Level
OA Open Access

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Force dynamics and synergist muscle activation in stick insects: the effects of using joint torques as mechanical stimuli.
Zill SN, Dallmann CJ, Büschges A, Chaudhry S, Schmitz J., J Neurophysiol 120(4), 2018
PMID: 30020837

64 References

Daten bereitgestellt von Europe PubMed Central.

Load-regulating mechanisms in gait and posture: comparative aspects.
Duysens J, Clarac F, Cruse H., Physiol. Rev. 80(1), 2000
PMID: 10617766
Simple robot suggests physical interlimb communication is essential for quadruped walking.
Owaki D, Kano T, Nagasawa K, Tero A, Ishiguro A., J R Soc Interface 10(78), 2012
PMID: 23097501
Proprioceptive regulation of locomotion.
Pearson KG., Curr. Opin. Neurobiol. 5(6), 1995
PMID: 8805415
Sensory regulation of stance-to-swing transition in generation of adaptive human walking: a simulation study
Aoi S, Ogihara N, Funato T, Tsuchiya K., 2012
Proprioception in insects. II. The action of the campaniform sensilla on the legs
Pringle JWS., 1938
Load sensing and control of posture and locomotion.
Zill S, Schmitz J, Buschges A., Arthropod Struct Dev 33(3), 2004
PMID: 18089039
The exoskeleton and insect proprioception. III. Activity of tibial campaniform sensilla during walking in the American cockroach, Periplaneta americana
Zill SN, Moran DT., 1981
Force encoding in stick insect legs delineates a reference frame for motor control.
Zill SN, Schmitz J, Chaudhry S, Buschges A., J. Neurophysiol. 108(5), 2012
PMID: 22673329
Mechanosensation and Adaptive Motor Control in Insects.
Tuthill JC, Wilson RI., Curr. Biol. 26(20), 2016
PMID: 27780045
Adaptive motor behavior in insects.
Ritzmann RE, Buschges A., Curr. Opin. Neurobiol. 17(6), 2007
PMID: 18308559
Behaviour-based modelling of hexapod locomotion: linking biology and technical application.
Durr V, Schmitz J, Cruse H., Arthropod Struct Dev 33(3), 2004
PMID: 18089037
Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system.
Akay T, Ludwar BCh, Goritz ML, Schmitz J, Buschges A., J. Neurosci. 27(12), 2007
PMID: 17376989
Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius mororsus
Zill SN, Büschges A, Schmitz J., 2011
Force feedback reinforces muscle synergies in insect legs.
Zill SN, Chaudhry S, Buschges A, Schmitz J., Arthropod Struct Dev 44(6 Pt A), 2015
PMID: 26193626
Effects of force detecting sense organs on muscle synergies are correlated with their response properties.
Zill SN, Neff D, Chaudhry S, Exter A, Schmitz J, Buschges A., Arthropod Struct Dev 46(4), 2017
PMID: 28552666
Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control
Dallmann CJ, Dürr V, Schmitz J., 2016
The depressor trochanteris motoneurones and their role in the coxo-trochanteral feedback loop in the stick insect Carausius morosus
Schmitz J., 1986
Load-compensating reactions in the proximal leg joints of stick insects during standing and walking
Schmitz J., 1993
The exoskeleton and insect proprioception. II. Reflex effects of tibial campaniform sensilla in the American cockroach, Periplaneta americana
Zill SN, Moran DT, Varela FG., 1981
Control of body height in a stick insect walking on a treadwheel
Cruse H, Schmitz J, Braun U, Schweins A., 1993
Central programming and reflex control of walking in the cockroach
Pearson KG., 1972
Common motor mechanisms support body load in serially homologous legs of cockroaches in posture and walking
Quimby LA, Amer AS, Zill SN., 2006
A neuromechanical model explaining forward and backward stepping in the stick insect.
Toth TI, Knops S, Daun-Gruhn S., J. Neurophysiol. 107(12), 2012
PMID: 22402652
Walknet, a bio-inspired controller for hexapod walking.
Schilling M, Hoinville T, Schmitz J, Cruse H., Biol Cybern 107(4), 2013
PMID: 23824506
Interjoint coordination in the stick insect leg-control system: the role of positional signaling.
Bucher D, Akay T, DiCaprio RA, Buschges A., J. Neurophysiol. 89(3), 2003
PMID: 12626610
No effects of coxo-trochanteral proprioceptors on extensor tibiae motor neurons in posture control
Schmitz J, Schöwerling H., 1992
Characteristics of leg movements and patterns of coordination in locusts walking on rough terrain
Pearson KG, Franklin R., 1984
Kinematic and behavioral evidence for a distinction between trotting and ambling gaits in the cockroach Blaberus discoidalis.
Bender JA, Simpson EM, Tietz BR, Daltorio KA, Quinn RD, Ritzmann RE., J. Exp. Biol. 214(Pt 12), 2011
PMID: 21613522
Inter-leg coordination in the control of walking speed in Drosophila.
Wosnitza A, Bockemuhl T, Dubbert M, Scholz H, Buschges A., J. Exp. Biol. 216(Pt 3), 2012
PMID: 23038731
What mechanisms coordinate leg movement in walking arthropods?
Cruse H., Trends Neurosci. 13(1), 1990
PMID: 1688670
The co-ordination of walking movements in arthropods
Wendler G., 1965
Intra- and intersegmental pathways active during walking in the locust
Macmillan DL, Kien J., 1983
Walking on a ‘peg leg’: extensor muscle activities and sensory feedback after distal leg denervation in cockroaches
Noah JA, Quimby L, Frazier SF, Zill SN., 2004
Which parameters control the leg movement of a walking insect? II. The start of the swing phase
Cruse H., 1985
Leg coordination in the stick insect Carausius morosus: effects of cutting thoracic connectives
Dean J., 1989
Coordinated walking of stick insects on a mercury surface
Graham D, Cruse H., 1981
Behaviour and motor output of stick insects walking on a slippery surface. I. Forward walking
Epstein S, Graham D., 1983
Tethered stick insect walking: a modified slippery surface setup with optomotor stimulation and electrical monitoring of tarsal contact.
Gruhn M, Hoffmann O, Dubbert M, Scharstein H, Buschges A., J. Neurosci. Methods 158(2), 2006
PMID: 16824615
Load signalling by cockroach trochanteral campaniform sensilla.
Zill SN, Ridgel AL, DiCaprio RA, Frazier SF., Brain Res. 822(1-2), 1999
PMID: 10082909
Campaniform sensilla of Calliphora vicina (Insecta, Diptera). I. Topography
Gnatzy W, Grünert U, Bender M., 1987
Degradation of mouse locomotor pattern in the absence of proprioceptive sensory feedback
Akay T, Tourtellotte WG, Arber S, Jessell TM., 2014

Dallmann CJ, Hoinville T, Dürr V, Schmitz J., 2017
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 29187626
PubMed | Europe PMC

Suchen in

Google Scholar