A load-based mechanism for inter-leg coordination in insects
Dallmann C, Hoinville T, Dürr V, Schmitz J (2017)
Proceedings of the Royal Society B: Biological Sciences 284(1868): 20171755.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Einrichtung
Forschungsgruppe
Embodied Interaction as a Core of Cognitive Interaction: A holistic approach towards autonomous walking system
Abstract / Bemerkung
Animals rely on an adaptive coordination of legs during walking. However, which specific mechanisms underlie coordination during natural locomotion remains largely unknown. One hypothesis is that legs can be coordinated mechanically based on a transfer of body load from one leg to another. To test this hypothesis, we simultaneously recorded leg kinematics, ground reaction forces and muscle activity in freely walking stick insects (Carausius morosus). Based on torque calculations, we show that load sensors (campaniform sensilla) at the proximal leg joints are well suited to encode the unloading of the leg in individual steps. The unloading coincides with a switch from stance to swing muscle activity, consistent with a load reflex promoting the stance-to-swing transition. Moreover, a mechanical simulation reveals that the unloading can be ascribed to the loading of a specific neighboring leg, making it exploitable for inter-leg coordination. We propose that mechanically mediated load-based coordination is used across insects analogously to mammals.
Erscheinungsjahr
2017
Zeitschriftentitel
Proceedings of the Royal Society B: Biological Sciences
Band
284
Ausgabe
1868
Art.-Nr.
20171755
Urheberrecht / Lizenzen
ISSN
0962-8452
eISSN
1471-2954
Page URI
https://pub.uni-bielefeld.de/record/2915640
Zitieren
Dallmann C, Hoinville T, Dürr V, Schmitz J. A load-based mechanism for inter-leg coordination in insects. Proceedings of the Royal Society B: Biological Sciences. 2017;284(1868): 20171755.
Dallmann, C., Hoinville, T., Dürr, V., & Schmitz, J. (2017). A load-based mechanism for inter-leg coordination in insects. Proceedings of the Royal Society B: Biological Sciences, 284(1868), 20171755. https://doi.org/10.1098/rspb.2017.1755
Dallmann, Chris, Hoinville, Thierry, Dürr, Volker, and Schmitz, Josef. 2017. “A load-based mechanism for inter-leg coordination in insects”. Proceedings of the Royal Society B: Biological Sciences 284 (1868): 20171755.
Dallmann, C., Hoinville, T., Dürr, V., and Schmitz, J. (2017). A load-based mechanism for inter-leg coordination in insects. Proceedings of the Royal Society B: Biological Sciences 284:20171755.
Dallmann, C., et al., 2017. A load-based mechanism for inter-leg coordination in insects. Proceedings of the Royal Society B: Biological Sciences, 284(1868): 20171755.
C. Dallmann, et al., “A load-based mechanism for inter-leg coordination in insects”, Proceedings of the Royal Society B: Biological Sciences, vol. 284, 2017, : 20171755.
Dallmann, C., Hoinville, T., Dürr, V., Schmitz, J.: A load-based mechanism for inter-leg coordination in insects. Proceedings of the Royal Society B: Biological Sciences. 284, : 20171755 (2017).
Dallmann, Chris, Hoinville, Thierry, Dürr, Volker, and Schmitz, Josef. “A load-based mechanism for inter-leg coordination in insects”. Proceedings of the Royal Society B: Biological Sciences 284.1868 (2017): 20171755.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Link(s) zu Volltext(en)
Access Level
Open Access
Daten bereitgestellt von European Bioinformatics Institute (EBI)
1 Zitation in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Force dynamics and synergist muscle activation in stick insects: the effects of using joint torques as mechanical stimuli.
Zill SN, Dallmann CJ, Büschges A, Chaudhry S, Schmitz J., J Neurophysiol 120(4), 2018
PMID: 30020837
Zill SN, Dallmann CJ, Büschges A, Chaudhry S, Schmitz J., J Neurophysiol 120(4), 2018
PMID: 30020837
64 References
Daten bereitgestellt von Europe PubMed Central.
Insect motor control: methodological advances, descending control and inter-leg coordination on the move.
Borgmann A, Buschges A., Curr. Opin. Neurobiol. 33(), 2015
PMID: 25579064
Borgmann A, Buschges A., Curr. Opin. Neurobiol. 33(), 2015
PMID: 25579064
Decoding the organization of spinal circuits that control locomotion.
Kiehn O., Nat. Rev. Neurosci. 17(4), 2016
PMID: 26935168
Kiehn O., Nat. Rev. Neurosci. 17(4), 2016
PMID: 26935168
The neural control of interlimb coordination during mammalian locomotion.
Frigon A., J. Neurophysiol. 117(6), 2017
PMID: 28298308
Frigon A., J. Neurophysiol. 117(6), 2017
PMID: 28298308
Load-regulating mechanisms in gait and posture: comparative aspects.
Duysens J, Clarac F, Cruse H., Physiol. Rev. 80(1), 2000
PMID: 10617766
Duysens J, Clarac F, Cruse H., Physiol. Rev. 80(1), 2000
PMID: 10617766
Simple robot suggests physical interlimb communication is essential for quadruped walking.
Owaki D, Kano T, Nagasawa K, Tero A, Ishiguro A., J R Soc Interface 10(78), 2012
PMID: 23097501
Owaki D, Kano T, Nagasawa K, Tero A, Ishiguro A., J R Soc Interface 10(78), 2012
PMID: 23097501
A Quadruped Robot Exhibiting Spontaneous Gait Transitions from Walking to Trotting to Galloping.
Owaki D, Ishiguro A., Sci Rep 7(1), 2017
PMID: 28325917
Owaki D, Ishiguro A., Sci Rep 7(1), 2017
PMID: 28325917
Proprioceptive regulation of locomotion.
Pearson KG., Curr. Opin. Neurobiol. 5(6), 1995
PMID: 8805415
Pearson KG., Curr. Opin. Neurobiol. 5(6), 1995
PMID: 8805415
Role of sensory feedback in the control of stance duration in walking cats.
Pearson KG., Brain Res Rev 57(1), 2007
PMID: 17761295
Pearson KG., Brain Res Rev 57(1), 2007
PMID: 17761295
Computer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition.
Ekeberg O, Pearson K., J. Neurophysiol. 94(6), 2005
PMID: 16049149
Ekeberg O, Pearson K., J. Neurophysiol. 94(6), 2005
PMID: 16049149
Sensory regulation of stance-to-swing transition in generation of adaptive human walking: a simulation study
Aoi S, Ogihara N, Funato T, Tsuchiya K., 2012
Aoi S, Ogihara N, Funato T, Tsuchiya K., 2012
Proprioception in insects. II. The action of the campaniform sensilla on the legs
Pringle JWS., 1938
Pringle JWS., 1938
Load sensing and control of posture and locomotion.
Zill S, Schmitz J, Buschges A., Arthropod Struct Dev 33(3), 2004
PMID: 18089039
Zill S, Schmitz J, Buschges A., Arthropod Struct Dev 33(3), 2004
PMID: 18089039
Sensory control of leg movement in the stick insect Carausius morosus.
Bassler U., Biol Cybern 25(2), 1977
PMID: 836915
Bassler U., Biol Cybern 25(2), 1977
PMID: 836915
The central connections and actions during walking of tibial campaniform sensilla in the locust.
Newland PL, Emptage NJ., J. Comp. Physiol. A 178(6), 1996
PMID: 8667289
Newland PL, Emptage NJ., J. Comp. Physiol. A 178(6), 1996
PMID: 8667289
Sensory signals of unloading in one leg follow stance onset in another leg: transfer of load and emergent coordination in cockroach walking.
Zill SN, Keller BR, Duke ER., J. Neurophysiol. 101(5), 2009
PMID: 19261716
Zill SN, Keller BR, Duke ER., J. Neurophysiol. 101(5), 2009
PMID: 19261716
The exoskeleton and insect proprioception. III. Activity of tibial campaniform sensilla during walking in the American cockroach, Periplaneta americana
Zill SN, Moran DT., 1981
Zill SN, Moran DT., 1981
Force detection in cockroach walking reconsidered: discharges of proximal tibial campaniform sensilla when body load is altered.
Noah JA, Quimby L, Frazier SF, Zill SN., J. Comp. Physiol. A 187(10), 2001
PMID: 11800034
Noah JA, Quimby L, Frazier SF, Zill SN., J. Comp. Physiol. A 187(10), 2001
PMID: 11800034
Force encoding in stick insect legs delineates a reference frame for motor control.
Zill SN, Schmitz J, Chaudhry S, Buschges A., J. Neurophysiol. 108(5), 2012
PMID: 22673329
Zill SN, Schmitz J, Chaudhry S, Buschges A., J. Neurophysiol. 108(5), 2012
PMID: 22673329
Mechanosensation and Adaptive Motor Control in Insects.
Tuthill JC, Wilson RI., Curr. Biol. 26(20), 2016
PMID: 27780045
Tuthill JC, Wilson RI., Curr. Biol. 26(20), 2016
PMID: 27780045
Adaptive motor behavior in insects.
Ritzmann RE, Buschges A., Curr. Opin. Neurobiol. 17(6), 2007
PMID: 18308559
Ritzmann RE, Buschges A., Curr. Opin. Neurobiol. 17(6), 2007
PMID: 18308559
Behaviour-based modelling of hexapod locomotion: linking biology and technical application.
Durr V, Schmitz J, Cruse H., Arthropod Struct Dev 33(3), 2004
PMID: 18089037
Durr V, Schmitz J, Cruse H., Arthropod Struct Dev 33(3), 2004
PMID: 18089037
Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system.
Akay T, Ludwar BCh, Goritz ML, Schmitz J, Buschges A., J. Neurosci. 27(12), 2007
PMID: 17376989
Akay T, Ludwar BCh, Goritz ML, Schmitz J, Buschges A., J. Neurosci. 27(12), 2007
PMID: 17376989
Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius mororsus
Zill SN, Büschges A, Schmitz J., 2011
Zill SN, Büschges A, Schmitz J., 2011
Force feedback reinforces muscle synergies in insect legs.
Zill SN, Chaudhry S, Buschges A, Schmitz J., Arthropod Struct Dev 44(6 Pt A), 2015
PMID: 26193626
Zill SN, Chaudhry S, Buschges A, Schmitz J., Arthropod Struct Dev 44(6 Pt A), 2015
PMID: 26193626
Effects of force detecting sense organs on muscle synergies are correlated with their response properties.
Zill SN, Neff D, Chaudhry S, Exter A, Schmitz J, Buschges A., Arthropod Struct Dev 46(4), 2017
PMID: 28552666
Zill SN, Neff D, Chaudhry S, Exter A, Schmitz J, Buschges A., Arthropod Struct Dev 46(4), 2017
PMID: 28552666
Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control
Dallmann CJ, Dürr V, Schmitz J., 2016
Dallmann CJ, Dürr V, Schmitz J., 2016
Motoneurons, DUM cells, and sensory neurons in an insect thoracic ganglion: a tracing study in the stick insect Carausius morosus.
Goldammer J, Buschges A, Schmidt J., J. Comp. Neurol. 520(2), 2012
PMID: 21618233
Goldammer J, Buschges A, Schmidt J., J. Comp. Neurol. 520(2), 2012
PMID: 21618233
The depressor trochanteris motoneurones and their role in the coxo-trochanteral feedback loop in the stick insect Carausius morosus
Schmitz J., 1986
Schmitz J., 1986
Load-compensating reactions in the proximal leg joints of stick insects during standing and walking
Schmitz J., 1993
Schmitz J., 1993
The exoskeleton and insect proprioception. II. Reflex effects of tibial campaniform sensilla in the American cockroach, Periplaneta americana
Zill SN, Moran DT, Varela FG., 1981
Zill SN, Moran DT, Varela FG., 1981
Control of body height in a stick insect walking on a treadwheel
Cruse H, Schmitz J, Braun U, Schweins A., 1993
Cruse H, Schmitz J, Braun U, Schweins A., 1993
Activity patterns and timing of muscle activity in the forward walking and backward walking stick insect Carausius morosus.
Rosenbaum P, Wosnitza A, Buschges A, Gruhn M., J. Neurophysiol. 104(3), 2010
PMID: 20668273
Rosenbaum P, Wosnitza A, Buschges A, Gruhn M., J. Neurophysiol. 104(3), 2010
PMID: 20668273
Central programming and reflex control of walking in the cockroach
Pearson KG., 1972
Pearson KG., 1972
Common motor mechanisms support body load in serially homologous legs of cockroaches in posture and walking
Quimby LA, Amer AS, Zill SN., 2006
Quimby LA, Amer AS, Zill SN., 2006
A neuromechanical model explaining forward and backward stepping in the stick insect.
Toth TI, Knops S, Daun-Gruhn S., J. Neurophysiol. 107(12), 2012
PMID: 22402652
Toth TI, Knops S, Daun-Gruhn S., J. Neurophysiol. 107(12), 2012
PMID: 22402652
Walknet, a bio-inspired controller for hexapod walking.
Schilling M, Hoinville T, Schmitz J, Cruse H., Biol Cybern 107(4), 2013
PMID: 23824506
Schilling M, Hoinville T, Schmitz J, Cruse H., Biol Cybern 107(4), 2013
PMID: 23824506
Role of proprioceptive signals from an insect femur-tibia joint in patterning motoneuronal activity of an adjacent leg joint.
Hess D, Buschges A., J. Neurophysiol. 81(4), 1999
PMID: 10200220
Hess D, Buschges A., J. Neurophysiol. 81(4), 1999
PMID: 10200220
Interjoint coordination in the stick insect leg-control system: the role of positional signaling.
Bucher D, Akay T, DiCaprio RA, Buschges A., J. Neurophysiol. 89(3), 2003
PMID: 12626610
Bucher D, Akay T, DiCaprio RA, Buschges A., J. Neurophysiol. 89(3), 2003
PMID: 12626610
No effects of coxo-trochanteral proprioceptors on extensor tibiae motor neurons in posture control
Schmitz J, Schöwerling H., 1992
Schmitz J, Schöwerling H., 1992
Slow temporal filtering may largely explain the transformation of stick insect (Carausius morosus) extensor motor neuron activity into muscle movement.
Hooper SL, Guschlbauer C, von Uckermann G, Buschges A., J. Neurophysiol. 98(3), 2007
PMID: 17625056
Hooper SL, Guschlbauer C, von Uckermann G, Buschges A., J. Neurophysiol. 98(3), 2007
PMID: 17625056
Characteristics of leg movements and patterns of coordination in locusts walking on rough terrain
Pearson KG, Franklin R., 1984
Pearson KG, Franklin R., 1984
Context-dependent changes in strength and efficacy of leg coordination mechanisms.
Durr V., J. Exp. Biol. 208(Pt 12), 2005
PMID: 15939768
Durr V., J. Exp. Biol. 208(Pt 12), 2005
PMID: 15939768
Kinematic and behavioral evidence for a distinction between trotting and ambling gaits in the cockroach Blaberus discoidalis.
Bender JA, Simpson EM, Tietz BR, Daltorio KA, Quinn RD, Ritzmann RE., J. Exp. Biol. 214(Pt 12), 2011
PMID: 21613522
Bender JA, Simpson EM, Tietz BR, Daltorio KA, Quinn RD, Ritzmann RE., J. Exp. Biol. 214(Pt 12), 2011
PMID: 21613522
Inter-leg coordination in the control of walking speed in Drosophila.
Wosnitza A, Bockemuhl T, Dubbert M, Scholz H, Buschges A., J. Exp. Biol. 216(Pt 3), 2012
PMID: 23038731
Wosnitza A, Bockemuhl T, Dubbert M, Scholz H, Buschges A., J. Exp. Biol. 216(Pt 3), 2012
PMID: 23038731
What mechanisms coordinate leg movement in walking arthropods?
Cruse H., Trends Neurosci. 13(1), 1990
PMID: 1688670
Cruse H., Trends Neurosci. 13(1), 1990
PMID: 1688670
The co-ordination of walking movements in arthropods
Wendler G., 1965
Wendler G., 1965
Intra- and intersegmental pathways active during walking in the locust
Macmillan DL, Kien J., 1983
Macmillan DL, Kien J., 1983
Walking on a ‘peg leg’: extensor muscle activities and sensory feedback after distal leg denervation in cockroaches
Noah JA, Quimby L, Frazier SF, Zill SN., 2004
Noah JA, Quimby L, Frazier SF, Zill SN., 2004
Convergence of load and movement information onto leg motoneurons in insects.
Schmitz J, Stein W., J. Neurobiol. 42(4), 2000
PMID: 10699980
Schmitz J, Stein W., J. Neurobiol. 42(4), 2000
PMID: 10699980
Which parameters control the leg movement of a walking insect? II. The start of the swing phase
Cruse H., 1985
Cruse H., 1985
Leg coordination in the stick insect Carausius morosus: effects of cutting thoracic connectives
Dean J., 1989
Dean J., 1989
Intersegmental interneurons can control the gain of reflexes in adjacent segments of the locust by their action on nonspiking local interneurons.
Laurent G, Burrows M., J. Neurosci. 9(9), 1989
PMID: 2795151
Laurent G, Burrows M., J. Neurosci. 9(9), 1989
PMID: 2795151
Intersegmental and local interneurons in the metathorax of the stick insect Carausius morosus that monitor middle leg position.
Brunn DE, Dean J., J. Neurophysiol. 72(3), 1994
PMID: 7807205
Brunn DE, Dean J., J. Neurophysiol. 72(3), 1994
PMID: 7807205
Sensory feedback induced by front-leg stepping entrains the activity of central pattern generators in caudal segments of the stick insect walking system.
Borgmann A, Hooper SL, Buschges A., J. Neurosci. 29(9), 2009
PMID: 19261892
Borgmann A, Hooper SL, Buschges A., J. Neurosci. 29(9), 2009
PMID: 19261892
Coordinated walking of stick insects on a mercury surface
Graham D, Cruse H., 1981
Graham D, Cruse H., 1981
Behaviour and motor output of stick insects walking on a slippery surface. I. Forward walking
Epstein S, Graham D., 1983
Epstein S, Graham D., 1983
Tethered stick insect walking: a modified slippery surface setup with optomotor stimulation and electrical monitoring of tarsal contact.
Gruhn M, Hoffmann O, Dubbert M, Scharstein H, Buschges A., J. Neurosci. Methods 158(2), 2006
PMID: 16824615
Gruhn M, Hoffmann O, Dubbert M, Scharstein H, Buschges A., J. Neurosci. Methods 158(2), 2006
PMID: 16824615
Load signalling by cockroach trochanteral campaniform sensilla.
Zill SN, Ridgel AL, DiCaprio RA, Frazier SF., Brain Res. 822(1-2), 1999
PMID: 10082909
Zill SN, Ridgel AL, DiCaprio RA, Frazier SF., Brain Res. 822(1-2), 1999
PMID: 10082909
Distribution and specific central projections of mechanoreceptors in the thorax and proximal leg joints of locusts.
Hustert R, Pfluger JH, Braunig P., Cell Tissue Res. 216(1), 1981
PMID: 7226211
Hustert R, Pfluger JH, Braunig P., Cell Tissue Res. 216(1), 1981
PMID: 7226211
Campaniform sensilla of Calliphora vicina (Insecta, Diptera). I. Topography
Gnatzy W, Grünert U, Bender M., 1987
Gnatzy W, Grünert U, Bender M., 1987
Projections of leg proprioceptors within the CNS of the fly Phormia in relation to the generalized insect ganglion.
Merritt DJ, Murphey RK., J. Comp. Neurol. 322(1), 1992
PMID: 1430308
Merritt DJ, Murphey RK., J. Comp. Neurol. 322(1), 1992
PMID: 1430308
Rapid mechano-sensory pathways code leg impact and elicit very rapid reflexes in insects.
Holtje M, Hustert R., J. Exp. Biol. 206(Pt 16), 2003
PMID: 12847116
Holtje M, Hustert R., J. Exp. Biol. 206(Pt 16), 2003
PMID: 12847116
Degradation of mouse locomotor pattern in the absence of proprioceptive sensory feedback
Akay T, Tourtellotte WG, Arber S, Jessell TM., 2014
Akay T, Tourtellotte WG, Arber S, Jessell TM., 2014
Dallmann CJ, Hoinville T, Dürr V, Schmitz J., 2017
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 29187626
PubMed | Europe PMC
Suchen in