Genome sequence of Methanobacterium congolense strain Buetzberg, a hydrogenotrophic, methanogenic archaeon, isolated from a mesophilic industrial-scale biogas plant utilizing bio-waste

Torres Tejerizo GA, Kim YS, Maus I, Wibberg D, Winkler A, Off S, Pühler A, Scherer P, Schlüter A (2017)
Journal of Biotechnology 247: 1-5.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Methanogenic Archaea are of importance at the end of the anaerobic digestion (AD) chain for biomass conversion. They finally produce methane, the end-product of AD. Among this group of microorganisms, members of the genus Methanobacterium are ubiquitously present in anaerobic habitats, such as bioreactors. The genome of a novel methanogenic archaeon, namely Methanobacterium congolense Buetzberg, originally isolated from a mesophilic biogas plant, was completely sequenced to analyze putative adaptive genome features conferring competitiveness of this isolate within the biogas reactor environment. Sequencing and assembly of the M. congolense Buetzberg genome yielded a chromosome with a size of 2,451,457 bp and a mean GC-content of 38.51%. Additionally, a plasmid with a size of 18,118 bp, featuring a GC content of 36.05% was identified. The M. congolense Buetzberg plasmid showed no sequence similarities with the plasmids described previously suggesting that it represents a new plasmid type. Analysis of the M. congolense Buetzberg chromosome architecture revealed a high collinearity with the Methanobacterium paludis chromosome. Furthermore, annotation of the genome and functional predictions disclosed several genes involved in cell wall and membrane biogenesis. Compilation of specific genes among Methanobacterium strains originating from AD environments revealed 474 genetic determinants that could be crucial for adaptation of these strains to specific conditions prevailing in AD habitats. (C) 2017 Elsevier B.V. All rights reserved.
Stichworte
Methanobacterium; Methanogenesis; Biogas production; Anaerobic; digestion; Biomethanation; Euryarchaeota
Erscheinungsjahr
2017
Zeitschriftentitel
Journal of Biotechnology
Band
247
Seite(n)
1-5
ISSN
0168-1656
eISSN
1873-4863
Page URI
https://pub.uni-bielefeld.de/record/2911777

Zitieren

Torres Tejerizo GA, Kim YS, Maus I, et al. Genome sequence of Methanobacterium congolense strain Buetzberg, a hydrogenotrophic, methanogenic archaeon, isolated from a mesophilic industrial-scale biogas plant utilizing bio-waste. Journal of Biotechnology. 2017;247:1-5.
Torres Tejerizo, G. A., Kim, Y. S., Maus, I., Wibberg, D., Winkler, A., Off, S., Pühler, A., et al. (2017). Genome sequence of Methanobacterium congolense strain Buetzberg, a hydrogenotrophic, methanogenic archaeon, isolated from a mesophilic industrial-scale biogas plant utilizing bio-waste. Journal of Biotechnology, 247, 1-5. doi:10.1016/j.jbiotec.2017.02.015
Torres Tejerizo, Gonzalo Arturo, Kim, Yong Sung, Maus, Irena, Wibberg, Daniel, Winkler, Anika, Off, Sandra, Pühler, Alfred, Scherer, Paul, and Schlüter, Andreas. 2017. “Genome sequence of Methanobacterium congolense strain Buetzberg, a hydrogenotrophic, methanogenic archaeon, isolated from a mesophilic industrial-scale biogas plant utilizing bio-waste”. Journal of Biotechnology 247: 1-5.
Torres Tejerizo, G. A., Kim, Y. S., Maus, I., Wibberg, D., Winkler, A., Off, S., Pühler, A., Scherer, P., and Schlüter, A. (2017). Genome sequence of Methanobacterium congolense strain Buetzberg, a hydrogenotrophic, methanogenic archaeon, isolated from a mesophilic industrial-scale biogas plant utilizing bio-waste. Journal of Biotechnology 247, 1-5.
Torres Tejerizo, G.A., et al., 2017. Genome sequence of Methanobacterium congolense strain Buetzberg, a hydrogenotrophic, methanogenic archaeon, isolated from a mesophilic industrial-scale biogas plant utilizing bio-waste. Journal of Biotechnology, 247, p 1-5.
G.A. Torres Tejerizo, et al., “Genome sequence of Methanobacterium congolense strain Buetzberg, a hydrogenotrophic, methanogenic archaeon, isolated from a mesophilic industrial-scale biogas plant utilizing bio-waste”, Journal of Biotechnology, vol. 247, 2017, pp. 1-5.
Torres Tejerizo, G.A., Kim, Y.S., Maus, I., Wibberg, D., Winkler, A., Off, S., Pühler, A., Scherer, P., Schlüter, A.: Genome sequence of Methanobacterium congolense strain Buetzberg, a hydrogenotrophic, methanogenic archaeon, isolated from a mesophilic industrial-scale biogas plant utilizing bio-waste. Journal of Biotechnology. 247, 1-5 (2017).
Torres Tejerizo, Gonzalo Arturo, Kim, Yong Sung, Maus, Irena, Wibberg, Daniel, Winkler, Anika, Off, Sandra, Pühler, Alfred, Scherer, Paul, and Schlüter, Andreas. “Genome sequence of Methanobacterium congolense strain Buetzberg, a hydrogenotrophic, methanogenic archaeon, isolated from a mesophilic industrial-scale biogas plant utilizing bio-waste”. Journal of Biotechnology 247 (2017): 1-5.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

How Low Can You Go: Methane Production of Methanobacterium congolense at Low CO2 Concentrations.
Chen X, Ottosen LDM, Kofoed MVW., Front Bioeng Biotechnol 7(), 2019
PMID: 30899758
Complete Genome Sequence of Clostridium kluyveri JZZ Applied in Chinese Strong-Flavor Liquor Production.
Wang Y, Li B, Dong H, Huang X, Chen R, Chen X, Yang L, Peng B, Xie G, Cheng W, Hao B, Li C, Xia J, Zhang B., Curr Microbiol 75(11), 2018
PMID: 30030563
An extracellular [NiFe] hydrogenase mediating iron corrosion is encoded in a genetically unstable genomic island in Methanococcus maripaludis.
Tsurumaru H, Ito N, Mori K, Wakai S, Uchiyama T, Iino T, Hosoyama A, Ataku H, Nishijima K, Mise M, Shimizu A, Harada T, Horikawa H, Ichikawa N, Sekigawa T, Jinno K, Tanikawa S, Yamazaki J, Sasaki K, Yamazaki S, Fujita N, Harayama S., Sci Rep 8(1), 2018
PMID: 30310166
Genomics and prevalence of bacterial and archaeal isolates from biogas-producing microbiomes.
Maus I, Bremges A, Stolze Y, Hahnke S, Cibis KG, Koeck DE, Kim YS, Kreubel J, Hassa J, Wibberg D, Weimann A, Off S, Stantscheff R, Zverlov VV, Schwarz WH, König H, Liebl W, Scherer P, McHardy AC, Sczyrba A, Klocke M, Pühler A, Schlüter A., Biotechnol Biofuels 10(), 2017
PMID: 29158776

31 References

Daten bereitgestellt von Europe PubMed Central.

Biomethanation and its potential.
Angelidaki I, Karakashev D, Batstone DJ, Plugge CM, Stams AJ., Meth. Enzymol. 494(), 2011
PMID: 21402222
Effect of continuous oleate addition on microbial communities involved in anaerobic digestion process.
Baserba MG, Angelidaki I, Karakashev D., Bioresour. Technol. 106(), 2011
PMID: 22206917
EDGAR 2.0: an enhanced software platform for comparative gene content analyses
Blom, Nucleic Acids Res. (), 2016
Genus I. Methanobacterium
Boone, 2001
Methanobacterium paludis sp. nov. and a novel strain of Methanobacterium lacus isolated from northern peatlands.
Cadillo-Quiroz H, Brauer SL, Goodson N, Yavitt JB, Zinder SH., Int. J. Syst. Evol. Microbiol. 64(Pt 5), 2014
PMID: 24449792
Methanobacterium congolense sp. nov., from a methanogenic fermentation of cassava peel.
Cuzin N, Ouattara AS, Labat M, Garcia JL., Int. J. Syst. Evol. Microbiol. 51(Pt 2), 2001
PMID: 11321095
Mauve: multiple alignment of conserved genomic sequence with rearrangements.
Darling AC, Mau B, Blattner FR, Perna NT., Genome Res. 14(7), 2004
PMID: 15231754

AUTHOR UNKNOWN, 0
Consed: a graphical tool for sequence finishing.
Gordon D, Abajian C, Green P., Genome Res. 8(3), 1998
PMID: 9521923
The CGView Server: a comparative genomics tool for circular genomes.
Grant JR, Stothard P., Nucleic Acids Res. 36(Web Server issue), 2008
PMID: 18411202
r2cat: synteny plots and comparative assembly.
Husemann P, Stoye J., Bioinformatics 26(4), 2009
PMID: 20015948
The complete genome sequence of the rumen methanogen Methanobacterium formicicum BRM9.
Kelly WJ, Leahy SC, Li D, Perry R, Lambie SC, Attwood GT, Altermann E., Stand Genomic Sci 9(), 2014
PMID: 25780506
Methanobacterium veterum sp. nov., from ancient Siberian permafrost.
Krivushin KV, Shcherbakova VA, Petrovskaya LE, Rivkina EM., Int. J. Syst. Evol. Microbiol. 60(Pt 2), 2009
PMID: 19654368
Essential anaplerotic role for the energy-converting hydrogenase Eha in hydrogenotrophic methanogenesis.
Lie TJ, Costa KC, Lupa B, Korpole S, Whitman WB, Leigh JA., Proc. Natl. Acad. Sci. U.S.A. 109(38), 2012
PMID: 22872868
Complete genome sequence of the hydrogenotrophic Archaeon Methanobacterium sp. Mb1 isolated from a production-scale biogas plant.
Maus I, Wibberg D, Stantscheff R, Cibis K, Eikmeyer FG, Konig H, Puhler A, Schluter A., J. Biotechnol. 168(4), 2013
PMID: 24184088
Complete genome sequence of the methanogenic neotype strain Methanobacterium formicicum MF(T.).
Maus I, Stantscheff R, Wibberg D, Stolze Y, Winkler A, Puhler A, Konig H, Schluter A., J. Biotechnol. 192 Pt A(), 2014
PMID: 25270020
Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates
Maus, Biotechnol Biofuels 11(August (9)), 2016
GenDB--an open source genome annotation system for prokaryote genomes.
Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Puhler A., Nucleic Acids Res. 31(8), 2003
PMID: 12682369
eggNOG v3.0: orthologous groups covering 1133 organisms at 41 different taxonomic ranges.
Powell S, Szklarczyk D, Trachana K, Roth A, Kuhn M, Muller J, Arnold R, Rattei T, Letunic I, Doerks T, Jensen LJ, von Mering C, Bork P., Nucleic Acids Res. 40(Database issue), 2011
PMID: 22096231
Shifting the genomic gold standard for the prokaryotic species definition.
Richter M, Rossello-Mora R., Proc. Natl. Acad. Sci. U.S.A. 106(45), 2009
PMID: 19855009
Draft genome sequence of Methanobacterium sp. maddingley, reconstructed from metagenomic sequencing of a methanogenic microbial consortium enriched from coal-seam gas formation water
Rosewarne, Genome Announc. (), 2013
Methanobacterium arcticum sp. nov., a methanogenic archaeon from Holocene Arctic permafrost.
Shcherbakova V, Rivkina E, Pecheritsyna S, Laurinavichius K, Suzina N, Gilichinsky D., Int. J. Syst. Evol. Microbiol. 61(Pt 1), 2010
PMID: 20173003
Hamburger bioabfall doppelt nutzen: erst energie dann kompost
Siechau, Muell und Abfall 3/2012(), 2012
Complete genome sequencing of Agrobacterium sp. H13-3, the former Rhizobium lupini H13-3, reveals a tripartite genome consisting of a circular and a linear chromosome and an accessory plasmid but lacking a tumor-inducing Ti-plasmid.
Wibberg D, Blom J, Jaenicke S, Kollin F, Rupp O, Scharf B, Schneiker-Bekel S, Sczcepanowski R, Goesmann A, Setubal JC, Schmitt R, Puhler A, Schluter A., J. Biotechnol. 155(1), 2011
PMID: 21329740
Genome sequence of the acid-tolerant strain Rhizobium sp. LPU83
Wibberg, J. Biotechnol. 176C(), 2014
Reactor performance and microbial community of an EGSB reactor operated at 20 and 15 degrees C.
Xing W, Zuo JE, Dai N, Cheng J, Li J., J. Appl. Microbiol. 107(3), 2009
PMID: 19320945
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 28216101
PubMed | Europe PMC

Suchen in

Google Scholar