51 Publikationen
-
2024 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2993477Beierling, H.; Richter, P.; Brandt, M.; Terfloth, L.; Schulte, C.; Wersing, H.; Vollmer, A. - L. (2024): What you need to know about a learning robot: Identifying the enabling architecture of complex systems Cognitive Systems Research,88:101286PUB | DOI | Download (ext.) | WoS
-
-
-
2020 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2950093Limberg, C.; Wersing, H.; Ritter, H. (2020): Accuracy Estimation for an Incrementally Learning Cooperative Inventory Assistant Robot. In: Haiqin Yang; Kitsuchart Pasupa; Andrew Chi-Sing Leung; James T. Kwok; Jonathan H. Chan; Irwin King (Hrsg.): Neural Information Processing. 27th International Conference, ICONIP 2020, Bangkok, Thailand, November 23–27, 2020, Proceedings, Part II. Cham: Springer International Publishing. (Lecture Notes in Computer Science, 12533). S. 738-749.PUB | DOI
-
2020 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2950094Limberg, C.; Göpfert, J. P.; Wersing, H.; Ritter, H. (2020): Prototype-Based Online Learning on Homogeneously Labeled Streaming Data. In: Igor Farkaš; Paolo Masulli; Stefan Wermter (Hrsg.): Artificial Neural Networks and Machine Learning – ICANN 2020. 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15–18, 2020, Proceedings, Part II. Cham: Springer International Publishing. (Lecture Notes in Computer Science, 12397). S. 204-213.PUB | DOI
-
2019 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982085Göpfert, J. P.; Wersing, H.; Hammer, B. (2019): Recovering Localized Adversarial Attacks. In: Igor V. Tetko; Věra Kůrková; Pavel Karpov; Fabian Theis (Hrsg.): Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings, Part I. Cham: Springer International Publishing. (Lecture Notes in Computer Science, ). S. 302-311.PUB | DOI
-
2019 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982084Losing, V.; Yoshikawa, T.; Hasenjaeger, M.; Hammer, B.; Wersing, H. (2019): Personalized Online Learning of Whole-Body Motion Classes using Multiple Inertial Measurement Units. In: 2019 International Conference on Robotics and Automation (ICRA). IEEE. S. 9530-9536.PUB | DOI
-
-
-
-
-
-
-
-
-
-
-
2014 | Patent | PUB-ID: 2906899Wersing, H.; Queißer, J. (01.06.2016): System for Controlling an Automated DevicePUB | Download (ext.)
-
2014 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2673548Fischer, L.; Hammer, B.; Wersing, H. (2014): Rejection strategies for learning vector quantization. In: Michel Verleysen (Hrsg.): ESANN, 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges, Belgium: i6doc.com. S. 41-46.PUB
-
-
2012 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2604349Lang, C.; Wachsmuth, S.; Hanheide, M.; Wersing, H. (2012): Facial Communicative Signals - Valence Recognition in Task-Oriented Human-Robot Interaction International Journal of Social Robotics - Special Issue on Measuring Human-Robot Interaction,4:(3): 249-262.PUB | DOI | WoS
-
-
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2034704Lang, C.; Wachsmuth, S.; Wersing, H.; Hanheide, M. (2010): Facial Expressions as Feedback Cue in Human-Robot Interaction - a Comparison between Human and Automatic Recognition Performances. In: IEEE Computer Society; Institute of Electrical and Electronics Engineers (Hrsg.): Workshop on CVPR for Human Communicative Behavior Analysis. San Francisco, California, USA: IEEE. S. 79-85.PUB | DOI
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2034035Denecke, A.; Ayllon Clemente, I.; Wersing, H.; Eggert, J.; Steil, J. J. (2010): Figure-ground segmentation using metrics adaptation in levelset methods. In: European Symposium on Artificial Neural Networks. S. 417-422.PUB
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2019022Dornbusch, D.; Haschke, R.; Menzel, S.; Wersing, H. (2010): Correlating shape and functional properties using decomposition approaches. In: Proc. FLAIRS-23. AAAI. S. 398-403.PUB
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2019017Dornbusch, D.; Haschke, R.; Menzel, S.; Wersing, H. (2010): Finding Correlations in Multimodal Data Using Decomposition Approaches. In: Proc. ESANN 2010. Belgium: d-facto. S. 253-258.PUB
-
2009 | Patent | PUB-ID: 2637645Wersing, H.; Götting, M.; Steil, J. J. (2009): Adaptive scene dependent filters in online learning environmentsPUB
-
-
-
-
2009 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1991920Lang, C.; Hanheide, M.; Lohse, M.; Wersing, H.; Sagerer, G. (2009): Feedback Interpretation based on Facial Expressions in Human–Robot Interaction. In: International Symposium on Robot and Human Interactive Communication (RO-MAN'09). Toyama, Japan: IEEE. S. 189-194.PUB | DOI
-
2008 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2142096Denecke, A.; Wersing, H.; Steil, J. J.; Körner, E. (2008): Robust object segmentation by adaptive metrics in Generalized LVQ. In: Proc. of the European Symposium on Artificial Neural Networks (ESANN). S. 319-324.PUB
-
2007 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1996923Wersing, H.; Kirstein, S.; Götting, M.; Brandl, H.; Dunn, M.; Mikhailova, I.; Görick, C.; Steil, J. J.; Ritter, H.; Körner, E. (2007): Online Learning of Objects and Faces in an Integrated Biologically Motivated Architecture. In: Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007) . Bielefeld: Bielefeld University.PUB | PDF | DOI
-
2007 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1632803Wersing, H.; Kirstein, S.; Götting, M.; Brandl, H.; Dunn, M.; Mikhailova, I.; Görick, C.; Steil, J. J.; Ritter, H.; Körner, E. (2007): Online Learning of Objects in a Biologically Motivated Visual Architecture International Journal of Neural Systems,17:(04): 219-230.PUB | DOI | WoS | PubMed | Europe PMC
-
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2142151Götting, M.; Steil, J. J.; Wersing, H.; Körner, E.; Ritter, H. (2006): Adaptive scene-dependent filters in online learning environments. In: New issues in neurocomputing. 13th European Symposium on Artificial Neural Networks 2005. S. 101-106.PUB | PDF
-
2006 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2142182Weng, S.; Wersing, H.; Steil, J. J.; Ritter, H. (2006): Learning Lateral Interactions for Feature Binding and Sensory Segmentation from Prototypic Basis Interactions IEEE Trans. Neural Networks,17:(4): 843-862.PUB | DOI | WoS | PubMed | Europe PMC
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2142157Steil, J. J.; Wersing, H. (2006): Recent Trends in Online Learning for Cognitive Robotics. In: M. Verleysen (Hrsg.): Proc. European Symposium on Artifical Neural Networks. d-side publications.PUB
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2142171Wersing, H.; Kirstein, S.; Götting, M.; Brandl, H.; Dunn, M.; Mikhailova, I.; Görick, C.; Steil, J. J.; Ritter, H.; Körner, E. (2006): A biologically motivated system for unconstrained online learning of visual objects. In: Stefanos Kollias (Hrsg.): Proc. of the Int. Conf. on Artificial Neural Networks (ICANN). Berlin, Heidelberg: Springer Berlin Heidelberg. (2). S. 508-517.PUB | DOI
-
2004 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2714352Ontrup, J.; Wersing, H.; Ritter, H. (2004): A Computational Feature Binding Model of Human Texture Perception Cognitive Processing,5:(1): 32-44.PUB
-
2002 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1613503Nattkemper, T. W.; Wersing, H.; Schubert, W.; Ritter, H. (2002): A neural network architecture for automatic segmentation of fluorescence micrographs. In: Neurocomputing. ELSEVIER SCIENCE BV. (NEUROCOMPUTING, 48). S. 357-367.PUB | DOI | WoS
-
2001 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1616820Wersing, H.; Beyn, W. - J.; Ritter, H. (2001): Dynamical stability conditions for recurrent neural networks with unsaturating piecewise linear transfer functions Neural Computation,13:(8): 1811-1825.PUB | DOI | WoS | PubMed | Europe PMC
-
2001 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2142293Wersing, H.; Steil, J. J.; Ritter, H. (2001): A Competitive Layer Model for Feature Binding and Sensory Segmentation Neural Computation,13:(2): 357-387.PUB | DOI | WoS | PubMed | Europe PMC
-
2000 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2375211Nattkemper, T. W.; Wersing, H.; Schubert, W.; Ritter, H. (2000): A Neural Network Architecture for Automatic Segmentation of Fluorescence Micrographs. In: Michel Verleysen (Hrsg.): Proc. of the 8th Europ. Symp. on Art. Neur. Netw. (ESANN).PUB
-
2000 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2374799Nattkemper, T. W.; Wersing, H.; Schubert, W.; Ritter, H. (2000): Fluorescence Micrograph Segmentation by Gestalt-Based Feature Binding. In: Proc. of the Int. Joint Conf. on Neur. Netw. (IJCNN). Como, Italy. (1). S. 248-254.PUB
-
2000 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2714744Nattkemper, T. W.; Wersing, H.; Schubert, W.; Ritter, H. (2000): Automatic Evaluation of Multi-Parameter Fluorescence Micrographs with a Neural Network Architecture. In: Proceedings of the International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences, METMBS '00. Las Vegas, USA. (2). S. 739-744.PUB
-
2000 | Dissertation | PUB-ID: 2434189Wersing, H. (2000): Spatial feature binding and learning in competitive neural layer architectures. Göttingen: Cuvillier.PUB
-
1999 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2714834Wersing, H.; Ritter, H. (1999): Backtracking Deterministic Annealing for Constraint Satisfaction Problems. In: ICANN 99, Ninth Int. Conf. Artifical Neural Netwworks. London: IEE. (Conference Publication / IEE, 470). S. 868-875.PUB
-
1999 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2714852Wersing, H.; Ritter, H. (1999): Feature Binding and Relaxation Labeling with the Competitive Layer Model. In: Proceedings. ESANN '99, 7th European Symposium on Artificial Neural Networks. Bruges. S. 295-300.PUB
-
1997 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2142325Wersing, H.; Steil, J. J.; Ritter, H. (1997): A Layered Recurrent Neural Network for Feature Grouping. In: Wulfram Gerstner; Alain Germond; Martin Hasler; Jean-Daniel Nicoud (Hrsg.): Int. Conf. on Artificial Neural Networks. S. 439-444.PUB