51 Publikationen
-
2024 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2993477H. Beierling, et al., “What you need to know about a learning robot: Identifying the enabling architecture of complex systems”, Cognitive Systems Research, vol. 88, 2024, : 101286.PUB | DOI | Download (ext.) | WoS
-
-
-
2020 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2950093C. Limberg, H. Wersing, and H. Ritter, “Accuracy Estimation for an Incrementally Learning Cooperative Inventory Assistant Robot”, Neural Information Processing. 27th International Conference, ICONIP 2020, Bangkok, Thailand, November 23–27, 2020, Proceedings, Part II, H. Yang, et al., eds., Lecture Notes in Computer Science, vol. 12533, Cham: Springer International Publishing, 2020, pp.738-749.PUB | DOI
-
2020 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2950094C. Limberg, et al., “Prototype-Based Online Learning on Homogeneously Labeled Streaming Data”, Artificial Neural Networks and Machine Learning – ICANN 2020. 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15–18, 2020, Proceedings, Part II, I. Farkaš, P. Masulli, and S. Wermter, eds., Lecture Notes in Computer Science, vol. 12397, Cham: Springer International Publishing, 2020, pp.204-213.PUB | DOI
-
2019 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982085J.P. Göpfert, H. Wersing, and B. Hammer, “Recovering Localized Adversarial Attacks”, Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings, Part I, I.V. Tetko, et al., eds., Lecture Notes in Computer Science, Cham: Springer International Publishing, 2019, pp.302-311.PUB | DOI
-
-
-
-
-
2017 | Konferenzbeitrag | PUB-ID: 2914734V. Losing, B. Hammer, and H. Wersing, “Self-Adjusting Memory: How to Deal with Diverse Drift Types”, Presented at the International Joint Conference on Artificial Intelligence (IJCAI) 2017, Melbourne, International Joint Conferences on Artificial Intelligence, 2017.PUB | PDF | DOI
-
-
-
2016 | Konferenzbeitrag | PUB-ID: 2908455V. Losing, B. Hammer, and H. Wersing, “Dedicated Memory Models for Continual Learning in the Presence of Concept Drift”, Presented at the Continual Learning Workshop of the Thirtieth Annual Conference on Neural Information Processing Systems (NIPS), Barcelona, 2016.PUB | PDF
-
-
-
-
2014 | Patent | PUB-ID: 2906899H. Wersing and J. Queißer, “System for Controlling an Automated Device”, 01.06.2016.PUB | Download (ext.)
-
2014 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2673548L. Fischer, B. Hammer, and H. Wersing, “Rejection strategies for learning vector quantization”, ESANN, 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, M. Verleysen, ed., Bruges, Belgium: i6doc.com, 2014, pp.41-46.PUB
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2425561D. Dornbusch, et al., “Decomposition of Multimodal Data for Affordance-based Identification of Potential Grasps”, Presented at the International Conference on Pattern Recognition Applications and Methods, Vilamoura, Algarve, Portugal, SciTePress, 2012.PUB | DOI
-
2012 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2604349C. Lang, et al., “Facial Communicative Signals - Valence Recognition in Task-Oriented Human-Robot Interaction”, International Journal of Social Robotics - Special Issue on Measuring Human-Robot Interaction, vol. 4, 2012, pp. 249-262.PUB | DOI | WoS
-
-
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2034704C. Lang, et al., “Facial Expressions as Feedback Cue in Human-Robot Interaction - a Comparison between Human and Automatic Recognition Performances”, Workshop on CVPR for Human Communicative Behavior Analysis, IEEE Computer Society and Institute of Electrical and Electronics Engineers, eds., San Francisco, California, USA: IEEE, 2010, pp.79-85.PUB | DOI
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2034035A. Denecke, et al., “Figure-ground segmentation using metrics adaptation in levelset methods”, European Symposium on Artificial Neural Networks, 2010, pp.417-422.PUB
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2019022D. Dornbusch, et al., “Correlating shape and functional properties using decomposition approaches”, Proc. FLAIRS-23, AAAI, 2010, pp.398-403.PUB
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2019017D. Dornbusch, et al., “Finding Correlations in Multimodal Data Using Decomposition Approaches”, Proc. ESANN 2010, Belgium: d-facto, 2010, pp.253-258.PUB
-
2009 | Patent | PUB-ID: 2637645H. Wersing, M. Götting, and J.J. Steil, “Adaptive scene dependent filters in online learning environments”, 2009.PUB
-
-
-
-
-
2008 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2142096A. Denecke, et al., “Robust object segmentation by adaptive metrics in Generalized LVQ”, Proc. of the European Symposium on Artificial Neural Networks (ESANN), 2008, pp.319-324.PUB
-
2007 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1996923H. Wersing, et al., “Online Learning of Objects and Faces in an Integrated Biologically Motivated Architecture”, Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007) , Bielefeld: Bielefeld University, 2007.PUB | PDF | DOI
-
2007 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1632803H. Wersing, et al., “Online Learning of Objects in a Biologically Motivated Visual Architecture”, International Journal of Neural Systems, vol. 17, 2007, pp. 219-230.PUB | DOI | WoS | PubMed | Europe PMC
-
-
-
2006 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2142182S. Weng, et al., “Learning Lateral Interactions for Feature Binding and Sensory Segmentation from Prototypic Basis Interactions”, IEEE Trans. Neural Networks, vol. 17, 2006, pp. 843-862.PUB | DOI | WoS | PubMed | Europe PMC
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2142157J.J. Steil and H. Wersing, “Recent Trends in Online Learning for Cognitive Robotics”, Proc. European Symposium on Artifical Neural Networks, M. Verleysen, ed., d-side publications, 2006.PUB
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2142171H. Wersing, et al., “A biologically motivated system for unconstrained online learning of visual objects”, Proc. of the Int. Conf. on Artificial Neural Networks (ICANN), S. Kollias, ed., vol. 2, Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp.508-517.PUB | DOI
-
2004 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2714352J. Ontrup, H. Wersing, and H. Ritter, “A Computational Feature Binding Model of Human Texture Perception”, Cognitive Processing, vol. 5, 2004, pp. 32-44.PUB
-
-
2001 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1616820H. Wersing, W.-J. Beyn, and H. Ritter, “Dynamical stability conditions for recurrent neural networks with unsaturating piecewise linear transfer functions”, Neural Computation, vol. 13, 2001, pp. 1811-1825.PUB | DOI | WoS | PubMed | Europe PMC
-
2001 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2142293H. Wersing, J.J. Steil, and H. Ritter, “A Competitive Layer Model for Feature Binding and Sensory Segmentation”, Neural Computation, vol. 13, 2001, pp. 357-387.PUB | DOI | WoS | PubMed | Europe PMC
-
2000 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2375211T.W. Nattkemper, et al., “A Neural Network Architecture for Automatic Segmentation of Fluorescence Micrographs”, Proc. of the 8th Europ. Symp. on Art. Neur. Netw. (ESANN), M. Verleysen, ed., 2000.PUB
-
2000 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2374799T.W. Nattkemper, et al., “Fluorescence Micrograph Segmentation by Gestalt-Based Feature Binding”, Proc. of the Int. Joint Conf. on Neur. Netw. (IJCNN), vol. 1, Como, Italy: 2000, pp.248-254.PUB
-
2000 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2714744T.W. Nattkemper, et al., “Automatic Evaluation of Multi-Parameter Fluorescence Micrographs with a Neural Network Architecture”, Proceedings of the International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences, METMBS '00, vol. 2, Las Vegas, USA: 2000, pp.739-744.PUB
-
2000 | Dissertation | PUB-ID: 2434189H. Wersing, Spatial feature binding and learning in competitive neural layer architectures, Göttingen: Cuvillier, 2000.PUB
-
1999 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2714834H. Wersing and H. Ritter, “Backtracking Deterministic Annealing for Constraint Satisfaction Problems”, ICANN 99, Ninth Int. Conf. Artifical Neural Netwworks, Conference Publication / IEE, vol. 470, London: IEE, 1999, pp.868-875.PUB
-
1999 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2714852H. Wersing and H. Ritter, “Feature Binding and Relaxation Labeling with the Competitive Layer Model”, Proceedings. ESANN '99, 7th European Symposium on Artificial Neural Networks, Bruges: 1999, pp.295-300.PUB
-
1997 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2142325H. Wersing, J.J. Steil, and H. Ritter, “A Layered Recurrent Neural Network for Feature Grouping”, Int. Conf. on Artificial Neural Networks, W. Gerstner, et al., eds., 1997, pp.439-444.PUB