51 Publikationen

Alle markieren

  • [51]
    2024 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2993477
    Beierling, H., Richter, P., Brandt, M., Terfloth, L., Schulte, C., Wersing, H., & Vollmer, A. - L. (2024). What you need to know about a learning robot: Identifying the enabling architecture of complex systems. Cognitive Systems Research, 88, 101286. https://doi.org/10.1016/j.cogsys.2024.101286
    PUB | DOI | Download (ext.) | WoS
     
  • [50]
    2021 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2959418
    Göpfert, J. P., Kuhl, U., Hindemith, L., Wersing, H., & Hammer, B. (2021). Intuitiveness in Active Teaching. IEEE Transactions on Human-Machine Systems, 1-10. https://doi.org/10.1109/THMS.2021.3121666
    PUB | DOI | WoS
     
  • [49]
    2020 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2950092
    Limberg, C., Wersing, H., & Ritter, H. (2020). Beyond Cross-Validation—Accuracy Estimation for Incremental and Active Learning Models. Machine Learning and Knowledge Extraction, 2(3), 327-346. https://doi.org/10.3390/make2030018
    PUB | DOI | WoS
     
  • [48]
    2020 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2950093
    Limberg, C., Wersing, H., & Ritter, H. (2020). Accuracy Estimation for an Incrementally Learning Cooperative Inventory Assistant Robot. In H. Yang, K. Pasupa, A. C. - S. Leung, J. T. Kwok, J. H. Chan, & I. King (Eds.), Lecture Notes in Computer Science: Vol. 12533. Neural Information Processing. 27th International Conference, ICONIP 2020, Bangkok, Thailand, November 23–27, 2020, Proceedings, Part II (pp. 738-749). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-63833-7_62
    PUB | DOI
     
  • [47]
    2020 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2950094
    Limberg, C., Göpfert, J. P., Wersing, H., & Ritter, H. (2020). Prototype-Based Online Learning on Homogeneously Labeled Streaming Data. In I. Farkaš, P. Masulli, & S. Wermter (Eds.), Lecture Notes in Computer Science: Vol. 12397. Artificial Neural Networks and Machine Learning – ICANN 2020. 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15–18, 2020, Proceedings, Part II (pp. 204-213). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-61616-8_17
    PUB | DOI
     
  • [46]
    2019 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982085
    Göpfert, J. P., Wersing, H., & Hammer, B. (2019). Recovering Localized Adversarial Attacks. In I. V. Tetko, V. Kůrková, P. Karpov, & F. Theis (Eds.), Lecture Notes in Computer Science. Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings, Part I (pp. 302-311). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-30487-4_24
    PUB | DOI
     
  • [45]
    2019 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982084
    Losing, V., Yoshikawa, T., Hasenjaeger, M., Hammer, B., & Wersing, H. (2019). Personalized Online Learning of Whole-Body Motion Classes using Multiple Inertial Measurement Units. 2019 International Conference on Robotics and Automation (ICRA), 9530-9536. IEEE. https://doi.org/10.1109/ICRA.2019.8794251
    PUB | DOI
     
  • [44]
    2019 | Preprint | Veröffentlicht | PUB-ID: 2934181
    Göpfert, J. P., Wersing, H., & Hammer, B. (2019). Adversarial attacks hidden in plain sight. doi:10.4119/unibi/2934181
    PUB | DOI | arXiv
     
  • [43]
    2018 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982088
    Losing, V., Wersing, H., & Hammer, B. (2018). Enhancing Very Fast Decision Trees with Local Split-Time Predictions. 2018 IEEE International Conference on Data Mining (ICDM), 287-296. IEEE. https://doi.org/10.1109/ICDM.2018.00044
    PUB | DOI
     
  • [42]
    2018 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2914730 OA
    Losing, V., Hammer, B., & Wersing, H. (2018). Incremental on-line learning: A review and comparison of state of the art algorithms. Neurocomputing, 275, 1261-1274. doi:10.1016/j.neucom.2017.06.084
    PUB | PDF | DOI | WoS
     
  • [41]
    2017 | Konferenzbeitrag | PUB-ID: 2914734 OA
    Losing, V., Hammer, B., & Wersing, H. (2017). Self-Adjusting Memory: How to Deal with Diverse Drift Types. Presented at the International Joint Conference on Artificial Intelligence (IJCAI) 2017, Melbourne. doi:10.24963/ijcai.2017/690
    PUB | PDF | DOI
     
  • [40]
    2017 | Konferenzbeitrag | PUB-ID: 2914732 OA
    Losing, V., Hammer, B., & Wersing, H. (2017). Personalized Maneuver Prediction at Intersections. Presented at the IEEE Intelligent Transportation Systems Conference 2017, Yokohama.
    PUB | PDF
     
  • [39]
    2016 | Konferenzbeitrag | PUB-ID: 2907624 OA
    Losing, V., Hammer, B., & Wersing, H. (2016). Choosing the Best Algorithm for an Incremental On-line Learning Task. Presented at the European Symposium on Artificial Neural Networks, Brügge.
    PUB | PDF
     
  • [38]
    2016 | Konferenzbeitrag | PUB-ID: 2908455 OA
    Losing, V., Hammer, B., & Wersing, H. (2016). Dedicated Memory Models for Continual Learning in the Presence of Concept Drift. Presented at the Continual Learning Workshop of the Thirtieth Annual Conference on Neural Information Processing Systems (NIPS), Barcelona.
    PUB | PDF
     
  • [37]
    2016 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2907622 OA
    Losing, V., Hammer, B., & Wersing, H. (2016). KNN Classifier with Self Adjusting Memory for Heterogeneous Concept Drift. 2016 IEEE 16th International Conference on Data Mining (ICDM), 291-300. Piscataway, NJ: IEEE. doi:10.1109/ICDM.2016.0040
    PUB | PDF | DOI
     
  • [36]
    2015 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2772413
    Fischer, L., Hammer, B., & Wersing, H. (2015). Efficient rejection strategies for prototype-based classification. Neurocomputing, 169(SI), 334-342. doi:10.1016/j.neucom.2014.10.092
    PUB | DOI | WoS
     
  • [35]
    2015 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2776021 OA
    Losing, V., Hammer, B., & Wersing, H. (2015). Interactive Online Learning for Obstacle Classification on a Mobile Robot. Presented at the International Joint Conference on Neural Networks, Killarney, Ireland. doi:10.1109/IJCNN.2015.7280610
    PUB | PDF | DOI
     
  • [34]
    2014 | Patent | PUB-ID: 2906899
    Wersing, H., & Queißer, J. (01.06.2016). System for Controlling an Automated Device
    PUB | Download (ext.)
     
  • [33]
    2014 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2673548
    Fischer, L., Hammer, B., & Wersing, H. (2014). Rejection strategies for learning vector quantization. In M. Verleysen (Ed.), ESANN, 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (pp. 41-46). Bruges, Belgium: i6doc.com.
    PUB
     
  • [32]
    2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2425561
    Dornbusch, D., Haschke, R., Menzel, S., & Wersing, H. (2012). Decomposition of Multimodal Data for Affordance-based Identification of Potential Grasps. Presented at the International Conference on Pattern Recognition Applications and Methods, Vilamoura, Algarve, Portugal. https://doi.org/10.5220/0003790205850589
    PUB | DOI
     
  • [31]
    2012 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2604349
    Lang, C., Wachsmuth, S., Hanheide, M., & Wersing, H. (2012). Facial Communicative Signals - Valence Recognition in Task-Oriented Human-Robot Interaction. International Journal of Social Robotics - Special Issue on Measuring Human-Robot Interaction, 4(3), 249-262. doi:10.1007/s12369-012-0145-z
    PUB | DOI | WoS
     
  • [30]
    2012 | Report | PUB-ID: 2467027 OA
    Lang, C., Wachsmuth, S., Hanheide, M., & Wersing, H. (2012). Facial Communicative Signal Interpretation in Human-Robot Interaction by Discriminative Video Subsequence Selection.
    PUB | PDF
     
  • [29]
    2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2376395
    John, S., Wersing, H., & Ritter, H. (2010). An iterative approach to local-PCA. Neural Networks (IJCNN), The 2010 International Joint Conference on, 1-6. https://doi.org/10.1109/IJCNN.2010.5596615
    PUB | DOI
     
  • [28]
    2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2034704
    Lang, C., Wachsmuth, S., Wersing, H., & Hanheide, M. (2010). Facial Expressions as Feedback Cue in Human-Robot Interaction - a Comparison between Human and Automatic Recognition Performances. In IEEE Computer Society & Institute of Electrical and Electronics Engineers (Eds.), Workshop on CVPR for Human Communicative Behavior Analysis (pp. 79-85). San Francisco, California, USA: IEEE. https://doi.org/10.1109/CVPRW.2010.5543264
    PUB | DOI
     
  • [27]
    2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2034035
    Denecke, A., Ayllon Clemente, I., Wersing, H., Eggert, J., & Steil, J. J. (2010). Figure-ground segmentation using metrics adaptation in levelset methods. European Symposium on Artificial Neural Networks, 417-422.
    PUB
     
  • [26]
    2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2019022
    Dornbusch, D., Haschke, R., Menzel, S., & Wersing, H. (2010). Correlating shape and functional properties using decomposition approaches. Proc. FLAIRS-23, 398-403. AAAI.
    PUB
     
  • [25]
    2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2019017
    Dornbusch, D., Haschke, R., Menzel, S., & Wersing, H. (2010). Finding Correlations in Multimodal Data Using Decomposition Approaches. Proc. ESANN 2010, 253-258. Belgium: d-facto.
    PUB
     
  • [24]
    2009 | Patent | PUB-ID: 2637645
    Wersing, H., Götting, M., & Steil, J. J. (2009). Adaptive scene dependent filters in online learning environments
    PUB
     
  • [23]
    2009 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1969815
    Denecke, A., Wersing, H., Steil, J. J., & Körner, E. (2009). Online figure-ground segmentation with adaptive metrics in Generalized LVQ. Neurocomputing, 72(7-9), 1470-1482. https://doi.org/10.1016/j.neucom.2008.11.028
    PUB | DOI | WoS
     
  • [22]
    2009 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1969825
    Denecke, A., Wersing, H., Steil, J. J., & Körner, E. (2009). Incremental Figure-Ground Segmentation using localized adaptive metrics in LVQ. International Workshop on Self-Organizing Maps (WSOM), 45-53. https://doi.org/10.1007/978-3-642-02397-2_6
    PUB | DOI
     
  • [21]
    2009 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1969830
    Kirstein, S., Denecke, A., Hasler, S., Wersing, H., Gross, H. - M., & Körner, E. (2009). A Vision Architecture for Unconstrained and Incremental Learning of Multiple Categories. Memetic Computing, 1(4), 291-304. https://doi.org/10.1007/s12293-009-0023-x
    PUB | DOI
     
  • [20]
    2009 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1991920
    Lang, C., Hanheide, M., Lohse, M., Wersing, H., & Sagerer, G. (2009). Feedback Interpretation based on Facial Expressions in Human–Robot Interaction. International Symposium on Robot and Human Interactive Communication (RO-MAN'09), 189-194. Toyama, Japan: IEEE. https://doi.org/10.1109/ROMAN.2009.5326199
    PUB | DOI
     
  • [19]
    2008 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2142096
    Denecke, A., Wersing, H., Steil, J. J., & Körner, E. (2008). Robust object segmentation by adaptive metrics in Generalized LVQ. Proc. of the European Symposium on Artificial Neural Networks (ESANN), 319-324
    PUB
     
  • [18]
    2007 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1996923 OA
    Wersing, H., Kirstein, S., Götting, M., Brandl, H., Dunn, M., Mikhailova, I., Görick, C., et al. (2007). Online Learning of Objects and Faces in an Integrated Biologically Motivated Architecture. Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007) Bielefeld: Bielefeld University. https://doi.org/10.2390/biecoll-icvs2007-67
    PUB | PDF | DOI
     
  • [17]
    2007 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1632803
    Wersing, H., Kirstein, S., Götting, M., Brandl, H., Dunn, M., Mikhailova, I., Görick, C., et al. (2007). Online Learning of Objects in a Biologically Motivated Visual Architecture. International Journal of Neural Systems, 17(04), 219-230. https://doi.org/10.1142/S0129065707001081
    PUB | DOI | WoS | PubMed | Europe PMC
     
  • [16]
    2007 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1594761 OA
    Steil, J. J., Götting, M., Wersing, H., Körner, E., & Ritter, H. (2007). Adaptive scene dependent filters for segmentation and online learning of visual objects. Neurocomputing, 70(7-9), 1235-1246. https://doi.org/10.1016/j.neucom.2006.11.020
    PUB | PDF | DOI | WoS
     
  • [15]
    2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2142151 OA
    Götting, M., Steil, J. J., Wersing, H., Körner, E., & Ritter, H. (2006). Adaptive scene-dependent filters in online learning environments. New issues in neurocomputing. 13th European Symposium on Artificial Neural Networks 2005, 101-106.
    PUB | PDF
     
  • [14]
    2006 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2142182
    Weng, S., Wersing, H., Steil, J. J., & Ritter, H. (2006). Learning Lateral Interactions for Feature Binding and Sensory Segmentation from Prototypic Basis Interactions. IEEE Trans. Neural Networks, 17(4), 843-862. https://doi.org/10.1109/TNN.2006.873295
    PUB | DOI | WoS | PubMed | Europe PMC
     
  • [13]
    2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2142157
    Steil, J. J., & Wersing, H. (2006). Recent Trends in Online Learning for Cognitive Robotics. In M. Verleysen (Ed.), Proc. European Symposium on Artifical Neural Networks d-side publications.
    PUB
     
  • [12]
    2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2142171
    Wersing, H., Kirstein, S., Götting, M., Brandl, H., Dunn, M., Mikhailova, I., Görick, C., et al. (2006). A biologically motivated system for unconstrained online learning of visual objects. In S. Kollias (Ed.), Proc. of the Int. Conf. on Artificial Neural Networks (ICANN) (Vol. 2, pp. 508-517). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/11840930_53
    PUB | DOI
     
  • [11]
    2004 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2714352
    Ontrup, J., Wersing, H., & Ritter, H. (2004). A Computational Feature Binding Model of Human Texture Perception. Cognitive Processing, 5(1), 32-44.
    PUB
     
  • [10]
    2002 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1613503
    Nattkemper, T. W., Wersing, H., Schubert, W., & Ritter, H. (2002). A neural network architecture for automatic segmentation of fluorescence micrographs. Neurocomputing, NEUROCOMPUTING, 48, 357-367. ELSEVIER SCIENCE BV. https://doi.org/10.1016/S0925-2312(01)00642-7
    PUB | DOI | WoS
     
  • [9]
    2001 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1616820
    Wersing, H., Beyn, W. - J., & Ritter, H. (2001). Dynamical stability conditions for recurrent neural networks with unsaturating piecewise linear transfer functions. Neural Computation, 13(8), 1811-1825. https://doi.org/10.1162/08997660152469350
    PUB | DOI | WoS | PubMed | Europe PMC
     
  • [8]
    2001 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2142293
    Wersing, H., Steil, J. J., & Ritter, H. (2001). A Competitive Layer Model for Feature Binding and Sensory Segmentation. Neural Computation, 13(2), 357-387. https://doi.org/10.1162/089976601300014574
    PUB | DOI | WoS | PubMed | Europe PMC
     
  • [7]
    2000 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2375211
    Nattkemper, T. W., Wersing, H., Schubert, W., & Ritter, H. (2000). A Neural Network Architecture for Automatic Segmentation of Fluorescence Micrographs. In M. Verleysen (Ed.), Proc. of the 8th Europ. Symp. on Art. Neur. Netw. (ESANN)
    PUB
     
  • [6]
    2000 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2374799
    Nattkemper, T. W., Wersing, H., Schubert, W., & Ritter, H. (2000). Fluorescence Micrograph Segmentation by Gestalt-Based Feature Binding. Proc. of the Int. Joint Conf. on Neur. Netw. (IJCNN), 1, 248-254
    PUB
     
  • [5]
    2000 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2714744
    Nattkemper, T. W., Wersing, H., Schubert, W., & Ritter, H. (2000). Automatic Evaluation of Multi-Parameter Fluorescence Micrographs with a Neural Network Architecture. Proceedings of the International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences, METMBS '00, 2, 739-744
    PUB
     
  • [4]
    2000 | Dissertation | PUB-ID: 2434189
    Wersing, H. (2000). Spatial feature binding and learning in competitive neural layer architectures. Göttingen: Cuvillier.
    PUB
     
  • [3]
    1999 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2714834
    Wersing, H., & Ritter, H. (1999). Backtracking Deterministic Annealing for Constraint Satisfaction Problems. ICANN 99, Ninth Int. Conf. Artifical Neural Netwworks, Conference Publication / IEE, 470, 868-875. London: IEE.
    PUB
     
  • [2]
    1999 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2714852
    Wersing, H., & Ritter, H. (1999). Feature Binding and Relaxation Labeling with the Competitive Layer Model. Proceedings. ESANN '99, 7th European Symposium on Artificial Neural Networks, 295-300
    PUB
     
  • [1]
    1997 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2142325
    Wersing, H., Steil, J. J., & Ritter, H. (1997). A Layered Recurrent Neural Network for Feature Grouping. In W. Gerstner, A. Germond, M. Hasler, & J. - D. Nicoud (Eds.), Int. Conf. on Artificial Neural Networks (pp. 439-444).
    PUB
     

Suche

Publikationen filtern

Darstellung / Sortierung

Export / Einbettung