51 Publikationen
-
2024 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2993477Beierling, H., Richter, P., Brandt, M., Terfloth, L., Schulte, C., Wersing, H., & Vollmer, A. - L. (2024). What you need to know about a learning robot: Identifying the enabling architecture of complex systems. Cognitive Systems Research, 88, 101286. https://doi.org/10.1016/j.cogsys.2024.101286
-
2021 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2959418Göpfert, J. P., Kuhl, U., Hindemith, L., Wersing, H., & Hammer, B. (2021). Intuitiveness in Active Teaching. IEEE Transactions on Human-Machine Systems, 1-10. https://doi.org/10.1109/THMS.2021.3121666
-
2020 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2950092Limberg, C., Wersing, H., & Ritter, H. (2020). Beyond Cross-Validation—Accuracy Estimation for Incremental and Active Learning Models. Machine Learning and Knowledge Extraction, 2(3), 327-346. https://doi.org/10.3390/make2030018
-
2020 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2950093Limberg, C., Wersing, H., & Ritter, H. (2020). Accuracy Estimation for an Incrementally Learning Cooperative Inventory Assistant Robot. In H. Yang, K. Pasupa, A. C. - S. Leung, J. T. Kwok, J. H. Chan, & I. King (Eds.), Lecture Notes in Computer Science: Vol. 12533. Neural Information Processing. 27th International Conference, ICONIP 2020, Bangkok, Thailand, November 23–27, 2020, Proceedings, Part II (pp. 738-749). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-63833-7_62
-
2020 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2950094Limberg, C., Göpfert, J. P., Wersing, H., & Ritter, H. (2020). Prototype-Based Online Learning on Homogeneously Labeled Streaming Data. In I. Farkaš, P. Masulli, & S. Wermter (Eds.), Lecture Notes in Computer Science: Vol. 12397. Artificial Neural Networks and Machine Learning – ICANN 2020. 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15–18, 2020, Proceedings, Part II (pp. 204-213). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-61616-8_17
-
2019 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982085Göpfert, J. P., Wersing, H., & Hammer, B. (2019). Recovering Localized Adversarial Attacks. In I. V. Tetko, V. Kůrková, P. Karpov, & F. Theis (Eds.), Lecture Notes in Computer Science. Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings, Part I (pp. 302-311). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-30487-4_24
-
2019 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982084Losing, V., Yoshikawa, T., Hasenjaeger, M., Hammer, B., & Wersing, H. (2019). Personalized Online Learning of Whole-Body Motion Classes using Multiple Inertial Measurement Units. 2019 International Conference on Robotics and Automation (ICRA), 9530-9536. IEEE. https://doi.org/10.1109/ICRA.2019.8794251
-
-
2018 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2982088Losing, V., Wersing, H., & Hammer, B. (2018). Enhancing Very Fast Decision Trees with Local Split-Time Predictions. 2018 IEEE International Conference on Data Mining (ICDM), 287-296. IEEE. https://doi.org/10.1109/ICDM.2018.00044
-
-
-
-
-
2016 | Konferenzbeitrag | PUB-ID: 2908455Losing, V., Hammer, B., & Wersing, H. (2016). Dedicated Memory Models for Continual Learning in the Presence of Concept Drift. Presented at the Continual Learning Workshop of the Thirtieth Annual Conference on Neural Information Processing Systems (NIPS), Barcelona.
-
2016 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2907622Losing, V., Hammer, B., & Wersing, H. (2016). KNN Classifier with Self Adjusting Memory for Heterogeneous Concept Drift. 2016 IEEE 16th International Conference on Data Mining (ICDM), 291-300. Piscataway, NJ: IEEE. doi:10.1109/ICDM.2016.0040
-
-
2015 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2776021Losing, V., Hammer, B., & Wersing, H. (2015). Interactive Online Learning for Obstacle Classification on a Mobile Robot. Presented at the International Joint Conference on Neural Networks, Killarney, Ireland. doi:10.1109/IJCNN.2015.7280610
-
2014 | Patent | PUB-ID: 2906899Wersing, H., & Queißer, J. (01.06.2016). System for Controlling an Automated Device
-
2014 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2673548Fischer, L., Hammer, B., & Wersing, H. (2014). Rejection strategies for learning vector quantization. In M. Verleysen (Ed.), ESANN, 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (pp. 41-46). Bruges, Belgium: i6doc.com.
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2425561Dornbusch, D., Haschke, R., Menzel, S., & Wersing, H. (2012). Decomposition of Multimodal Data for Affordance-based Identification of Potential Grasps. Presented at the International Conference on Pattern Recognition Applications and Methods, Vilamoura, Algarve, Portugal. https://doi.org/10.5220/0003790205850589
-
2012 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2604349Lang, C., Wachsmuth, S., Hanheide, M., & Wersing, H. (2012). Facial Communicative Signals - Valence Recognition in Task-Oriented Human-Robot Interaction. International Journal of Social Robotics - Special Issue on Measuring Human-Robot Interaction, 4(3), 249-262. doi:10.1007/s12369-012-0145-z
-
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2376395John, S., Wersing, H., & Ritter, H. (2010). An iterative approach to local-PCA. Neural Networks (IJCNN), The 2010 International Joint Conference on, 1-6. https://doi.org/10.1109/IJCNN.2010.5596615
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2034704Lang, C., Wachsmuth, S., Wersing, H., & Hanheide, M. (2010). Facial Expressions as Feedback Cue in Human-Robot Interaction - a Comparison between Human and Automatic Recognition Performances. In IEEE Computer Society & Institute of Electrical and Electronics Engineers (Eds.), Workshop on CVPR for Human Communicative Behavior Analysis (pp. 79-85). San Francisco, California, USA: IEEE. https://doi.org/10.1109/CVPRW.2010.5543264
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2034035Denecke, A., Ayllon Clemente, I., Wersing, H., Eggert, J., & Steil, J. J. (2010). Figure-ground segmentation using metrics adaptation in levelset methods. European Symposium on Artificial Neural Networks, 417-422.
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2019022Dornbusch, D., Haschke, R., Menzel, S., & Wersing, H. (2010). Correlating shape and functional properties using decomposition approaches. Proc. FLAIRS-23, 398-403. AAAI.
-
2010 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2019017Dornbusch, D., Haschke, R., Menzel, S., & Wersing, H. (2010). Finding Correlations in Multimodal Data Using Decomposition Approaches. Proc. ESANN 2010, 253-258. Belgium: d-facto.
-
2009 | Patent | PUB-ID: 2637645Wersing, H., Götting, M., & Steil, J. J. (2009). Adaptive scene dependent filters in online learning environments
-
2009 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1969815Denecke, A., Wersing, H., Steil, J. J., & Körner, E. (2009). Online figure-ground segmentation with adaptive metrics in Generalized LVQ. Neurocomputing, 72(7-9), 1470-1482. https://doi.org/10.1016/j.neucom.2008.11.028
-
2009 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1969825Denecke, A., Wersing, H., Steil, J. J., & Körner, E. (2009). Incremental Figure-Ground Segmentation using localized adaptive metrics in LVQ. International Workshop on Self-Organizing Maps (WSOM), 45-53. https://doi.org/10.1007/978-3-642-02397-2_6
-
2009 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1969830Kirstein, S., Denecke, A., Hasler, S., Wersing, H., Gross, H. - M., & Körner, E. (2009). A Vision Architecture for Unconstrained and Incremental Learning of Multiple Categories. Memetic Computing, 1(4), 291-304. https://doi.org/10.1007/s12293-009-0023-x
-
2009 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1991920Lang, C., Hanheide, M., Lohse, M., Wersing, H., & Sagerer, G. (2009). Feedback Interpretation based on Facial Expressions in Human–Robot Interaction. International Symposium on Robot and Human Interactive Communication (RO-MAN'09), 189-194. Toyama, Japan: IEEE. https://doi.org/10.1109/ROMAN.2009.5326199
-
2008 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2142096Denecke, A., Wersing, H., Steil, J. J., & Körner, E. (2008). Robust object segmentation by adaptive metrics in Generalized LVQ. Proc. of the European Symposium on Artificial Neural Networks (ESANN), 319-324
-
2007 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1996923Wersing, H., Kirstein, S., Götting, M., Brandl, H., Dunn, M., Mikhailova, I., Görick, C., et al. (2007). Online Learning of Objects and Faces in an Integrated Biologically Motivated Architecture. Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007) Bielefeld: Bielefeld University. https://doi.org/10.2390/biecoll-icvs2007-67
-
2007 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1632803Wersing, H., Kirstein, S., Götting, M., Brandl, H., Dunn, M., Mikhailova, I., Görick, C., et al. (2007). Online Learning of Objects in a Biologically Motivated Visual Architecture. International Journal of Neural Systems, 17(04), 219-230. https://doi.org/10.1142/S0129065707001081
-
2007 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1594761Steil, J. J., Götting, M., Wersing, H., Körner, E., & Ritter, H. (2007). Adaptive scene dependent filters for segmentation and online learning of visual objects. Neurocomputing, 70(7-9), 1235-1246. https://doi.org/10.1016/j.neucom.2006.11.020
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2142151Götting, M., Steil, J. J., Wersing, H., Körner, E., & Ritter, H. (2006). Adaptive scene-dependent filters in online learning environments. New issues in neurocomputing. 13th European Symposium on Artificial Neural Networks 2005, 101-106.
-
2006 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2142182Weng, S., Wersing, H., Steil, J. J., & Ritter, H. (2006). Learning Lateral Interactions for Feature Binding and Sensory Segmentation from Prototypic Basis Interactions. IEEE Trans. Neural Networks, 17(4), 843-862. https://doi.org/10.1109/TNN.2006.873295
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2142157Steil, J. J., & Wersing, H. (2006). Recent Trends in Online Learning for Cognitive Robotics. In M. Verleysen (Ed.), Proc. European Symposium on Artifical Neural Networks d-side publications.
-
2006 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2142171Wersing, H., Kirstein, S., Götting, M., Brandl, H., Dunn, M., Mikhailova, I., Görick, C., et al. (2006). A biologically motivated system for unconstrained online learning of visual objects. In S. Kollias (Ed.), Proc. of the Int. Conf. on Artificial Neural Networks (ICANN) (Vol. 2, pp. 508-517). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/11840930_53
-
2004 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2714352Ontrup, J., Wersing, H., & Ritter, H. (2004). A Computational Feature Binding Model of Human Texture Perception. Cognitive Processing, 5(1), 32-44.
-
2002 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 1613503Nattkemper, T. W., Wersing, H., Schubert, W., & Ritter, H. (2002). A neural network architecture for automatic segmentation of fluorescence micrographs. Neurocomputing, NEUROCOMPUTING, 48, 357-367. ELSEVIER SCIENCE BV. https://doi.org/10.1016/S0925-2312(01)00642-7
-
2001 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 1616820Wersing, H., Beyn, W. - J., & Ritter, H. (2001). Dynamical stability conditions for recurrent neural networks with unsaturating piecewise linear transfer functions. Neural Computation, 13(8), 1811-1825. https://doi.org/10.1162/08997660152469350
-
2001 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2142293Wersing, H., Steil, J. J., & Ritter, H. (2001). A Competitive Layer Model for Feature Binding and Sensory Segmentation. Neural Computation, 13(2), 357-387. https://doi.org/10.1162/089976601300014574
-
2000 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2375211Nattkemper, T. W., Wersing, H., Schubert, W., & Ritter, H. (2000). A Neural Network Architecture for Automatic Segmentation of Fluorescence Micrographs. In M. Verleysen (Ed.), Proc. of the 8th Europ. Symp. on Art. Neur. Netw. (ESANN)
-
2000 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2374799Nattkemper, T. W., Wersing, H., Schubert, W., & Ritter, H. (2000). Fluorescence Micrograph Segmentation by Gestalt-Based Feature Binding. Proc. of the Int. Joint Conf. on Neur. Netw. (IJCNN), 1, 248-254
-
2000 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2714744Nattkemper, T. W., Wersing, H., Schubert, W., & Ritter, H. (2000). Automatic Evaluation of Multi-Parameter Fluorescence Micrographs with a Neural Network Architecture. Proceedings of the International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences, METMBS '00, 2, 739-744
-
2000 | Dissertation | PUB-ID: 2434189Wersing, H. (2000). Spatial feature binding and learning in competitive neural layer architectures. Göttingen: Cuvillier.
-
1999 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2714834Wersing, H., & Ritter, H. (1999). Backtracking Deterministic Annealing for Constraint Satisfaction Problems. ICANN 99, Ninth Int. Conf. Artifical Neural Netwworks, Conference Publication / IEE, 470, 868-875. London: IEE.
-
1999 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2714852Wersing, H., & Ritter, H. (1999). Feature Binding and Relaxation Labeling with the Competitive Layer Model. Proceedings. ESANN '99, 7th European Symposium on Artificial Neural Networks, 295-300
-
1997 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2142325Wersing, H., Steil, J. J., & Ritter, H. (1997). A Layered Recurrent Neural Network for Feature Grouping. In W. Gerstner, A. Germond, M. Hasler, & J. - D. Nicoud (Eds.), Int. Conf. on Artificial Neural Networks (pp. 439-444).