Daniela Hofmann
PEVZ-ID
13 Publikationen
-
-
-
2014 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2900320Frenay, B., Hofmann, D., Schulz, A., Biehl, M., & Hammer, B. (2014). Valid interpretation of feature relevance for linear data mappings. 2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), 149-156. Piscataway, NJ: Institute of Electrical & Electronics Engineers (IEEE). https://doi.org/10.1109/cidm.2014.7008661
-
2014 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2678214Hofmann, D., Schleif, F. - M., Paaßen, B., & Hammer, B. (2014). Learning interpretable kernelized prototype-based models. Neurocomputing, 141, 84-96. doi:10.1016/j.neucom.2014.03.003
-
-
2013 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982102Hofmann, D., Gisbrecht, A., & Hammer, B. (2013). Efficient Approximations of Kernel Robust Soft LVQ. In P. A. Estévez, J. C. Príncipe, & P. Zegers (Eds.), Advances in Intelligent Systems and Computing. Advances in Self-Organizing Maps (pp. 183-192). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-35230-0_19
-
2013 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2625199Hofmann, D., & Hammer, B. (2013). Sparse approximations for kernel learning vector quantization. ESANN
-
2012 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982106Gisbrecht, A., Hofmann, D., & Hammer, B. (2012). Discriminative Dimensionality Reduction Mappings. In J. Hollmén, F. Klawonn, & A. Tucker (Eds.), Lecture Notes in Computer Science. Advances in Intelligent Data Analysis XI (pp. 126-138). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-34156-4_13
-
2012 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982107Hofmann, D., & Hammer, B. (2012). Kernel Robust Soft Learning Vector Quantization. In N. Mana, F. Schwenker, & E. Trentin (Eds.), Lecture Notes in Computer Science. Artificial Neural Networks in Pattern Recognition (pp. 14-23). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-33212-8_2
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2671172Hofmann, D., Gisbrecht, A., & Hammer, B. (2012). Discriminative probabilistic prototype based models in kernel space. Workshop NC^2 2012
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2625238Hofmann, D., Gisbrecht, A., & Hammer, B. (2012). Efficient Approximations of Kernel Robust Soft LVQ. WSOM
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2625247Gisbrecht, A., Hofmann, D., & Hammer, B. (2012). Discriminative Dimensionality Reduction Mappings. In J. Hollmén, F. Klawonn, & A. Tucker (Eds.), Lecture Notes in Computer Science: Vol. 7619. Advances in Intelligent Data Analysis XI - 11th International Symposium, IDA 2012, Helsinki, Finland, October 25-27, 2012. Proceedings (pp. 126-138). Springer.
-
2012 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2625254Hofmann, D., & Hammer, B. (2012). Kernel Robust Soft Learning Vector Quantization. In N. Mana, F. Schwenker, & E. Trentin (Eds.), Lecture Notes in Computer Science: Vol. 7477. Artificial Neural Networks in Pattern Recognition - 5th INNS IAPR TC 3 GIRPR Workshop, ANNPR 2012, Trento, Italy, September 17-19, 2012. Proceedings (pp. 14-23). Springer.