6 Publikationen
-
2025 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 3001606Feldhans, R., & Hammer, B., 2025. Towards Reliable Drift Detection and Explanation in Text Data. In Intelligent Data Engineering and Automated Learning – IDEAL 2024, PT I. Lecture Notes in Computer Science. no.15346 Cham: Springer , pp. 301-312.PUB | DOI | WoS
-
-
-
2023 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2983457Schroeder, S., et al., 2023. Measuring Fairness with Biased Data: A Case Study on the Effects of Unsupervised Data in Fairness Evaluation. In I. Rojas, G. Joya, & A. Catala, eds. Advances in Computational Intelligence. 17th International Work-Conference on Artificial Neural Networks, IWANN 2023, Ponta Delgada, Portugal, June 19–21, 2023, Proceedings, Part I. Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, pp. 134-145.PUB | DOI
-
2022 | Zeitschriftenaufsatz | E-Veröff. vor dem Druck | PUB-ID: 2962746Artelt, A., et al., 2022. Contrasting Explanations for Understanding and Regularizing Model Adaptations. Neural Processing Letters, 55, p 5273–5297.PUB | PDF | DOI | Download (ext.) | WoS
-
2021 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2957373Artelt, A., et al., 2021. Contrastive Explanations for Explaining Model Adaptations. In I. Rojas, G. Joya, & A. Catala, eds. Advances in Computational Intelligence. 16th International Work-Conference on Artificial Neural Networks, IWANN 2021, Virtual Event, June 16–18, 2021, Proceedings, Part I. Lecture Notes in Computer Science. Cham: Springer , pp. 101-112.PUB | DOI