6 Publikationen
-
2025 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 3001606Feldhans, R., & Hammer, B. (2025). Towards Reliable Drift Detection and Explanation in Text Data. Intelligent Data Engineering and Automated Learning – IDEAL 2024, PT I, Lecture Notes in Computer Science, 15346, 301-312. Cham: Springer . https://doi.org/10.1007/978-3-031-77731-8_28PUB | DOI | WoS
-
2023 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2985684Kummert, J., Schulz, A., Feldhans, R., Habigt, M., Stemmler, M., Kohler, C., Abel, D., et al. (2023). Generating Cardiovascular Data to Improve Training of Assistive Heart Devices. 2023 IEEE Symposium Series on Computational Intelligence (SSCI), 1292-1297. IEEE. https://doi.org/10.1109/SSCI52147.2023.10372030PUB | DOI
-
2023 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2985683Feldhans, R., Schulz, A., Kummert, J., Habigt, M., Stemmler, M., Kohler, C., Abel, D., et al. (2023). Data Augmentation for Cardiovascular Time Series Data Using WaveNet. 2023 IEEE Symposium Series on Computational Intelligence (SSCI), 836-841. IEEE. https://doi.org/10.1109/SSCI52147.2023.10371813PUB | DOI
-
2023 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2983457Schroeder, S., Schulz, A., Tarakanov, I., Feldhans, R., & Hammer, B. (2023). Measuring Fairness with Biased Data: A Case Study on the Effects of Unsupervised Data in Fairness Evaluation. In I. Rojas, G. Joya, & A. Catala (Eds.), Lecture Notes in Computer Science. Advances in Computational Intelligence. 17th International Work-Conference on Artificial Neural Networks, IWANN 2023, Ponta Delgada, Portugal, June 19–21, 2023, Proceedings, Part I (pp. 134-145). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-43085-5_11PUB | DOI
-
2022 | Zeitschriftenaufsatz | E-Veröff. vor dem Druck | PUB-ID: 2962746Artelt, A., Hinder, F., Vaquet, V., Feldhans, R., & Hammer, B. (2022). Contrasting Explanations for Understanding and Regularizing Model Adaptations. Neural Processing Letters, 55, 5273–5297. https://doi.org/10.1007/s11063-022-10826-5PUB | PDF | DOI | Download (ext.) | WoS
-
2021 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2957373Artelt, A., Hinder, F., Vaquet, V., Feldhans, R., & Hammer, B. (2021). Contrastive Explanations for Explaining Model Adaptations. In I. Rojas, G. Joya, & A. Catala (Eds.), Lecture Notes in Computer Science. Advances in Computational Intelligence. 16th International Work-Conference on Artificial Neural Networks, IWANN 2021, Virtual Event, June 16–18, 2021, Proceedings, Part I (pp. 101-112). Cham: Springer . https://doi.org/10.1007/978-3-030-85030-2_9PUB | DOI