8 Publikationen
-
-
-
2022 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982135Jakob, Jonathan, Hasenjäger, Martina, and Hammer, Barbara. “Reject Options for Incremental Regression Scenarios”. Artificial Neural Networks and Machine Learning – ICANN 2022. 31st International Conference on Artificial Neural Networks, Bristol, UK, September 6–9, 2022, Proceedings; Part IV. Ed. Elias Pimenidis, Plamen Angelov, Chrisina Jayne, Antonios Papaleonidas, and Mehmet Aydin. Cham: Springer Nature Switzerland, 2022. Lecture Notes in Computer Science. 248-259.PUB | DOI
-
2022 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2969459Jakob, Jonathan, Artelt, André, Hasenjäger, Martina, and Hammer, Barbara. “SAM-kNN Regressor for Online Learning in Water Distribution Networks”. Artificial Neural Networks and Machine Learning – ICANN 2022. 31st International Conference on Artificial Neural Networks, Bristol, UK, September 6–9, 2022, Proceedings, Part III. Ed. Elias Pimenidis, Plamen Angelov, Chrisina Jayne, Antonios Papaleonidas, and Mehmet Aydin. Cham: Springer Nature , 2022.Vol. 13531. Lecture Notes in Computer Science. 752-762.PUB | DOI
-
-
2020 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2939517Pfannschmidt, Lukas, Jakob, Jonathan, Hinder, Fabian, Biehl, Michael, Tino, Peter, and Hammer, Barbara. “Feature Relevance Determination for Ordinal Regression in the Context of Feature Redundancies and Privileged Information”. Neurocomputing (2020).PUB | DOI | Download (ext.) | WoS | arXiv
-
2019 | Kurzbeitrag Konferenz / Poster | PUB-ID: 2935044Artelt, André, Jakob, Jonathan, and Vaquet, Valerie. “Continuous online user authentication based on keystroke dynamics”. Presented at the Interdisciplinary College (IK), Günne/Möhnesee, Germany, 2019.PUB | Dateien verfügbar
-
2019 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2933893Pfannschmidt, Lukas, Jakob, Jonathan, Biehl, Michael, Tino, Peter, and Hammer, Barbara. “Feature Relevance Bounds for Ordinal Regression”. Proceedings of the 27th European Symposium on Artificial Neural Networks (ESANN 2019). Ed. Michel Verleysen. Louvain-la-Neuve: i6doc, 2019.PUB | Download (ext.) | arXiv