8 Publikationen
-
-
-
2022 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982135J. Jakob, M. Hasenjäger, and B. Hammer, “Reject Options for Incremental Regression Scenarios”, Artificial Neural Networks and Machine Learning – ICANN 2022. 31st International Conference on Artificial Neural Networks, Bristol, UK, September 6–9, 2022, Proceedings; Part IV, E. Pimenidis, et al., eds., Lecture Notes in Computer Science, Cham: Springer Nature Switzerland, 2022, pp.248-259.PUB | DOI
-
2022 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2969459J. Jakob, et al., “SAM-kNN Regressor for Online Learning in Water Distribution Networks”, Artificial Neural Networks and Machine Learning – ICANN 2022. 31st International Conference on Artificial Neural Networks, Bristol, UK, September 6–9, 2022, Proceedings, Part III, E. Pimenidis, et al., eds., Lecture Notes in Computer Science, vol. 13531, Cham: Springer Nature , 2022, pp.752-762.PUB | DOI
-
-
2020 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2939517L. Pfannschmidt, et al., “Feature Relevance Determination for Ordinal Regression in the Context of Feature Redundancies and Privileged Information”, Neurocomputing, 2020.PUB | DOI | Download (ext.) | WoS | arXiv
-
2019 | Kurzbeitrag Konferenz / Poster | PUB-ID: 2935044A. Artelt, J. Jakob, and V. Vaquet, “Continuous online user authentication based on keystroke dynamics”, Presented at the Interdisciplinary College (IK), Günne/Möhnesee, Germany, 2019.PUB | Dateien verfügbar
-
2019 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2933893L. Pfannschmidt, et al., “Feature Relevance Bounds for Ordinal Regression”, Proceedings of the 27th European Symposium on Artificial Neural Networks (ESANN 2019), M. Verleysen, ed., Louvain-la-Neuve: i6doc, 2019.PUB | Download (ext.) | arXiv