8 Publikationen
-
-
-
2022 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2982135Jakob, J., Hasenjäger, M., & Hammer, B., 2022. Reject Options for Incremental Regression Scenarios. In E. Pimenidis, et al., eds. Artificial Neural Networks and Machine Learning – ICANN 2022. 31st International Conference on Artificial Neural Networks, Bristol, UK, September 6–9, 2022, Proceedings; Part IV. Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, pp. 248-259.PUB | DOI
-
2022 | Sammelwerksbeitrag | Veröffentlicht | PUB-ID: 2969459Jakob, J., et al., 2022. SAM-kNN Regressor for Online Learning in Water Distribution Networks. In E. Pimenidis, et al., eds. Artificial Neural Networks and Machine Learning – ICANN 2022. 31st International Conference on Artificial Neural Networks, Bristol, UK, September 6–9, 2022, Proceedings, Part III. Lecture Notes in Computer Science. no.13531 Cham: Springer Nature , pp. 752-762.PUB | DOI
-
-
2020 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2939517Pfannschmidt, L., et al., 2020. Feature Relevance Determination for Ordinal Regression in the Context of Feature Redundancies and Privileged Information. Neurocomputing.PUB | DOI | Download (ext.) | WoS | arXiv
-
2019 | Kurzbeitrag Konferenz / Poster | PUB-ID: 2935044Artelt, A., Jakob, J., & Vaquet, V., 2019. Continuous online user authentication based on keystroke dynamics. Presented at the Interdisciplinary College (IK), Günne/Möhnesee, Germany.PUB | Dateien verfügbar
-
2019 | Konferenzbeitrag | Veröffentlicht | PUB-ID: 2933893Pfannschmidt, L., et al., 2019. Feature Relevance Bounds for Ordinal Regression. In M. Verleysen, ed. Proceedings of the 27th European Symposium on Artificial Neural Networks (ESANN 2019). Louvain-la-Neuve: i6doc.PUB | Download (ext.) | arXiv