Applying rearrangement distances to enable plasmid epidemiology with pling

Frolova D, Lima L, Roberts L, Bohnenkämper L, Wittler R, Stoye J, Iqbal Z (2024)
Microbial Genomics 10(10): 001300.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Frolova, Daria; Lima, Leandro; Roberts, Leah; Bohnenkämper, LeonardUniBi ; Wittler, RolandUniBi ; Stoye, JensUniBi ; Iqbal, Zamin
Abstract / Bemerkung
Plasmids are a key vector of antibiotic resistance, but the current bioinformatics toolkit is not well suited to tracking them. The rapid structural changes seen in plasmid genomes present considerable challenges to evolutionary and epidemiological analysis. Typical approaches are either low resolution (replicon typing) or use shared k-mer content to define a genetic distance. However, this distance can both overestimate plasmid relatedness by ignoring rearrangements, and underestimate by over-penalizing gene gain/loss. Therefore a model is needed which captures the key components of how plasmid genomes evolve structurally – through gene/block gain or loss, and rearrangement. A secondary requirement is to prevent promiscuous transposable elements (TEs) leading to over-clustering of unrelated plasmids. We choose the ‘Double Cut and Join Indel’ (DCJ-Indel) model, in which plasmids are studied at a coarse level, as a sequence of signed integers (representing genes or aligned blocks), and the distance between two plasmids is the minimum number of rearrangement events or indels needed to transform one into the other. We show how this gives much more meaningful distances between plasmids. We introduce a software workflow pling (https://github.com/iqbal-lab-org/pling), which uses the DCJ-Indel model, to calculate distances between plasmids and then cluster them. In our approach, we combine containment distances and DCJ-Indel distances to build a TE-aware plasmid network. We demonstrate superior performance and interpretability to other plasmid clustering tools on the ‘Russian Doll’ dataset and a hospital transmission dataset.
Stichworte
clustering; mobile genetic elements; plasmids; rearrangements; transmission; whole genome analysis
Erscheinungsjahr
2024
Zeitschriftentitel
Microbial Genomics
Band
10
Ausgabe
10
Art.-Nr.
001300
eISSN
2057-5858
Page URI
https://pub.uni-bielefeld.de/record/2990552

Zitieren

Frolova D, Lima L, Roberts L, et al. Applying rearrangement distances to enable plasmid epidemiology with pling. Microbial Genomics . 2024;10(10): 001300.
Frolova, D., Lima, L., Roberts, L., Bohnenkämper, L., Wittler, R., Stoye, J., & Iqbal, Z. (2024). Applying rearrangement distances to enable plasmid epidemiology with pling. Microbial Genomics , 10(10), 001300. https://doi.org/10.1099/mgen.0.001300
Frolova, Daria, Lima, Leandro, Roberts, Leah, Bohnenkämper, Leonard, Wittler, Roland, Stoye, Jens, and Iqbal, Zamin. 2024. “Applying rearrangement distances to enable plasmid epidemiology with pling”. Microbial Genomics 10 (10): 001300.
Frolova, D., Lima, L., Roberts, L., Bohnenkämper, L., Wittler, R., Stoye, J., and Iqbal, Z. (2024). Applying rearrangement distances to enable plasmid epidemiology with pling. Microbial Genomics 10:001300.
Frolova, D., et al., 2024. Applying rearrangement distances to enable plasmid epidemiology with pling. Microbial Genomics , 10(10): 001300.
D. Frolova, et al., “Applying rearrangement distances to enable plasmid epidemiology with pling”, Microbial Genomics , vol. 10, 2024, : 001300.
Frolova, D., Lima, L., Roberts, L., Bohnenkämper, L., Wittler, R., Stoye, J., Iqbal, Z.: Applying rearrangement distances to enable plasmid epidemiology with pling. Microbial Genomics . 10, : 001300 (2024).
Frolova, Daria, Lima, Leandro, Roberts, Leah, Bohnenkämper, Leonard, Wittler, Roland, Stoye, Jens, and Iqbal, Zamin. “Applying rearrangement distances to enable plasmid epidemiology with pling”. Microbial Genomics 10.10 (2024): 001300.

Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

PMID: 39401066
PubMed | Europe PMC

Preprint: 10.1101/2024.06.12.598623

Suchen in

Google Scholar