Investigating the complexity of the double distance problems
Dias Vieira Braga M, Brockmann LR, Klerx K, Stoye J (2024)
Algorithms for Molecular Biology 19: 1.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
s13015-023-00246-y.pdf
2.89 MB
Autor*in
Einrichtung
Abstract / Bemerkung
Background Two genomes A and B over the same set of gene families form a canonical pair when each of them has exactly one gene from each family. Denote by n∗ the number of common families of A and B. Different dis- tances of canonical genomes can be derived from a structure called breakpoint graph, which represents the relation between the two given genomes as a collection of cycles of even length and paths. Let ci and pj be respectively the numbers of cycles of length i and of paths of length j in the breakpoint graph of genomes A and B. Then, the breakpoint distance of A and B is equal to n∗ − (c2 + p0
2). Similarly, when the considered rearrangements are those modeled by the double-cut-and-join (DCJ) operation, the rearrangement distance of A and B is n∗ − (c + pe
2
),
where c is the total number of cycles and pe is the total number of paths of even length.
Motivation The distance formulation is a basic unit for several other combinatorial problems related to genome evolution and ancestral reconstruction, such as median or double distance. Interestingly, both median and double distance problems can be solved in polynomial time for the breakpoint distance, while they are NP-hard for the rearrangement distance. One way of exploring the complexity space between these two extremes is to consider a σk
distance, defined to be n∗ −
(
c2 + c4 + . . . + c k + p0+p2+...+p k−2
2 ), and increasingly investigate the complexities of median and double distance for the σ4 distance, then the σ6 distance, and so on.
Results While for the median much effort was done in our and in other research groups but no progress
was obtained even for the σ4 distance, for solving the double distance under σ4 and σ6 distances we could devise linear time algorithms, which we present here
Stichworte
Comparative genomics;
Genome rearrangement;
Breakpoint distance;
Double-cut-and-join (DCJ) distance;
Double distance
Erscheinungsjahr
2024
Zeitschriftentitel
Algorithms for Molecular Biology
Band
19
Art.-Nr.
1
Urheberrecht / Lizenzen
eISSN
1748-7188
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Universität Bielefeld im Rahmen des DEAL-Vertrags gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2985702
Zitieren
Dias Vieira Braga M, Brockmann LR, Klerx K, Stoye J. Investigating the complexity of the double distance problems. Algorithms for Molecular Biology. 2024;19: 1.
Dias Vieira Braga, M., Brockmann, L. R., Klerx, K., & Stoye, J. (2024). Investigating the complexity of the double distance problems. Algorithms for Molecular Biology, 19, 1. https://doi.org/10.1186/s13015-023-00246-y
Dias Vieira Braga, Marília, Brockmann, Leonie Ruth, Klerx, Katharina, and Stoye, Jens. 2024. “Investigating the complexity of the double distance problems”. Algorithms for Molecular Biology 19: 1.
Dias Vieira Braga, M., Brockmann, L. R., Klerx, K., and Stoye, J. (2024). Investigating the complexity of the double distance problems. Algorithms for Molecular Biology 19:1.
Dias Vieira Braga, M., et al., 2024. Investigating the complexity of the double distance problems. Algorithms for Molecular Biology, 19: 1.
M. Dias Vieira Braga, et al., “Investigating the complexity of the double distance problems”, Algorithms for Molecular Biology, vol. 19, 2024, : 1.
Dias Vieira Braga, M., Brockmann, L.R., Klerx, K., Stoye, J.: Investigating the complexity of the double distance problems. Algorithms for Molecular Biology. 19, : 1 (2024).
Dias Vieira Braga, Marília, Brockmann, Leonie Ruth, Klerx, Katharina, and Stoye, Jens. “Investigating the complexity of the double distance problems”. Algorithms for Molecular Biology 19 (2024): 1.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
s13015-023-00246-y.pdf
2.89 MB
Access Level
Open Access
Zuletzt Hochgeladen
2024-06-14T12:40:19Z
MD5 Prüfsumme
b10b9a3837f0c1d41ff54303c9eef5b5
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 38178195
PubMed | Europe PMC
Suchen in