Using Tactile Sensing to Improve the Sample Efficiency and Performance of Deep Deterministic Policy Gradients for Simulated In-Hand Manipulation Tasks

Melnik A, Lach LM, Plappert M, Korthals T, Haschke R, Ritter H (2021)
Frontiers in Robotics and AI 8.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 7.63 MB
Abstract / Bemerkung
Deep Reinforcement Learning techniques demonstrate advances in the domain of robotics. One of the limiting factors is a large number of interaction samples usually required for training in simulated and real-world environments. In this work, we demonstrate for a set of simulated dexterous in-hand object manipulation tasks that tactile information can substantially increase sample efficiency for training (by up to more than threefold). We also observe an improvement in performance (up to 46%) after adding tactile information. To examine the role of tactile-sensor parameters in these improvements, we included experiments with varied sensor-measurement accuracy (ground truth continuous values, noisy continuous values, Boolean values), and varied spatial resolution of the tactile sensors (927 sensors, 92 sensors, and 16 pooled sensor areas in the hand). To facilitate further studies and comparisons, we make these touch-sensor extensions available as a part of the OpenAI Gym Shadow-Dexterous-Hand robotics environments.
Erscheinungsjahr
2021
Zeitschriftentitel
Frontiers in Robotics and AI
Band
8
eISSN
2296-9144
Page URI
https://pub.uni-bielefeld.de/record/2956099

Zitieren

Melnik A, Lach LM, Plappert M, Korthals T, Haschke R, Ritter H. Using Tactile Sensing to Improve the Sample Efficiency and Performance of Deep Deterministic Policy Gradients for Simulated In-Hand Manipulation Tasks. Frontiers in Robotics and AI. 2021;8.
Melnik, A., Lach, L. M., Plappert, M., Korthals, T., Haschke, R., & Ritter, H. (2021). Using Tactile Sensing to Improve the Sample Efficiency and Performance of Deep Deterministic Policy Gradients for Simulated In-Hand Manipulation Tasks. Frontiers in Robotics and AI, 8. https://doi.org/10.3389/frobt.2021.538773
Melnik, A., Lach, L. M., Plappert, M., Korthals, T., Haschke, R., and Ritter, H. (2021). Using Tactile Sensing to Improve the Sample Efficiency and Performance of Deep Deterministic Policy Gradients for Simulated In-Hand Manipulation Tasks. Frontiers in Robotics and AI 8.
Melnik, A., et al., 2021. Using Tactile Sensing to Improve the Sample Efficiency and Performance of Deep Deterministic Policy Gradients for Simulated In-Hand Manipulation Tasks. Frontiers in Robotics and AI, 8.
A. Melnik, et al., “Using Tactile Sensing to Improve the Sample Efficiency and Performance of Deep Deterministic Policy Gradients for Simulated In-Hand Manipulation Tasks”, Frontiers in Robotics and AI, vol. 8, 2021.
Melnik, A., Lach, L.M., Plappert, M., Korthals, T., Haschke, R., Ritter, H.: Using Tactile Sensing to Improve the Sample Efficiency and Performance of Deep Deterministic Policy Gradients for Simulated In-Hand Manipulation Tasks. Frontiers in Robotics and AI. 8, (2021).
Melnik, Andrew, Lach, Luca Michael, Plappert, Matthias, Korthals, Timo, Haschke, Robert, and Ritter, Helge. “Using Tactile Sensing to Improve the Sample Efficiency and Performance of Deep Deterministic Policy Gradients for Simulated In-Hand Manipulation Tasks”. Frontiers in Robotics and AI 8 (2021).
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2021-07-08T09:41:03Z
MD5 Prüfsumme
2afb9854ba3b55860cd020a749986d1c

Link(s) zu Volltext(en)
Access Level
OA Open Access
Externes Material:
Zusatzmaterial

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

PMID: 34268337
PubMed | Europe PMC

Suchen in

Google Scholar