Using Tactile Sensing to Improve the Sample Efficiency and Performance of Deep Deterministic Policy Gradients for Simulated In-Hand Manipulation Tasks
Melnik A, Lach LM, Plappert M, Korthals T, Haschke R, Ritter H (2021)
Frontiers in Robotics and AI 8: 538773.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Autor*in
Melnik, AndrewUniBi;
Lach, Luca MichaelUniBi ;
Plappert, Matthias;
Korthals, TimoUniBi ;
Haschke, RobertUniBi ;
Ritter, HelgeUniBi
Einrichtung
Abstract / Bemerkung
Deep Reinforcement Learning techniques demonstrate advances in the domain of robotics. One of the limiting factors is a large number of interaction samples usually required for training in simulated and real-world environments. In this work, we demonstrate for a set of simulated dexterous in-hand object manipulation tasks that tactile information can substantially increase sample efficiency for training (by up to more than threefold). We also observe an improvement in performance (up to 46%) after adding tactile information. To examine the role of tactile-sensor parameters in these improvements, we included experiments with varied sensor-measurement accuracy (ground truth continuous values, noisy continuous values, Boolean values), and varied spatial resolution of the tactile sensors (927 sensors, 92 sensors, and 16 pooled sensor areas in the hand). To facilitate further studies and comparisons, we make these touch-sensor extensions available as a part of the OpenAI Gym Shadow-Dexterous-Hand robotics environments.
Erscheinungsjahr
2021
Zeitschriftentitel
Frontiers in Robotics and AI
Band
8
Art.-Nr.
538773
Urheberrecht / Lizenzen
eISSN
2296-9144
Page URI
https://pub.uni-bielefeld.de/record/2956099
Zitieren
Melnik A, Lach LM, Plappert M, Korthals T, Haschke R, Ritter H. Using Tactile Sensing to Improve the Sample Efficiency and Performance of Deep Deterministic Policy Gradients for Simulated In-Hand Manipulation Tasks. Frontiers in Robotics and AI. 2021;8: 538773.
Melnik, A., Lach, L. M., Plappert, M., Korthals, T., Haschke, R., & Ritter, H. (2021). Using Tactile Sensing to Improve the Sample Efficiency and Performance of Deep Deterministic Policy Gradients for Simulated In-Hand Manipulation Tasks. Frontiers in Robotics and AI, 8, 538773. https://doi.org/10.3389/frobt.2021.538773
Melnik, Andrew, Lach, Luca Michael, Plappert, Matthias, Korthals, Timo, Haschke, Robert, and Ritter, Helge. 2021. “Using Tactile Sensing to Improve the Sample Efficiency and Performance of Deep Deterministic Policy Gradients for Simulated In-Hand Manipulation Tasks”. Frontiers in Robotics and AI 8: 538773.
Melnik, A., Lach, L. M., Plappert, M., Korthals, T., Haschke, R., and Ritter, H. (2021). Using Tactile Sensing to Improve the Sample Efficiency and Performance of Deep Deterministic Policy Gradients for Simulated In-Hand Manipulation Tasks. Frontiers in Robotics and AI 8:538773.
Melnik, A., et al., 2021. Using Tactile Sensing to Improve the Sample Efficiency and Performance of Deep Deterministic Policy Gradients for Simulated In-Hand Manipulation Tasks. Frontiers in Robotics and AI, 8: 538773.
A. Melnik, et al., “Using Tactile Sensing to Improve the Sample Efficiency and Performance of Deep Deterministic Policy Gradients for Simulated In-Hand Manipulation Tasks”, Frontiers in Robotics and AI, vol. 8, 2021, : 538773.
Melnik, A., Lach, L.M., Plappert, M., Korthals, T., Haschke, R., Ritter, H.: Using Tactile Sensing to Improve the Sample Efficiency and Performance of Deep Deterministic Policy Gradients for Simulated In-Hand Manipulation Tasks. Frontiers in Robotics and AI. 8, : 538773 (2021).
Melnik, Andrew, Lach, Luca Michael, Plappert, Matthias, Korthals, Timo, Haschke, Robert, and Ritter, Helge. “Using Tactile Sensing to Improve the Sample Efficiency and Performance of Deep Deterministic Policy Gradients for Simulated In-Hand Manipulation Tasks”. Frontiers in Robotics and AI 8 (2021): 538773.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
Open Access
Zuletzt Hochgeladen
2021-07-08T09:41:03Z
MD5 Prüfsumme
2afb9854ba3b55860cd020a749986d1c
Link(s) zu Volltext(en)
Access Level
Open Access
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 34268337
PubMed | Europe PMC
Suchen in