Supplementary Research Data for the Paper entitled Identification of NLOS and Multi-path Conditions in UWB Localization using Machine Learning Methods

Lian Sang C, Steinhagen B, Homburg JD, Adams M, Hesse M, Rückert U (2020)
Bielefeld University.

Datenpublikation
 
Download
OA 33.51 MB
Abstract / Bemerkung
This experimental research data-set was used to present the multi-label classification results of UWB ranging system in our journal article entitled “Identification of NLOS and Multi-path Conditions in UWB Localization using Machine Learning Methods”. The research data includes the extracted features of UWB experimental data including their respective labels and the corresponding source code for the python machine learning library scikit-learn. The article was published in the special issue entitled “Recent Advances in Indoor Localization Systems and Technologies” at computing and artificial intelligence section, applied sciences journal, MDPI.
Erscheinungsjahr
2020
Page URI
https://pub.uni-bielefeld.de/record/2943719

Zitieren

Lian Sang C, Steinhagen B, Homburg JD, Adams M, Hesse M, Rückert U. Supplementary Research Data for the Paper entitled Identification of NLOS and Multi-path Conditions in UWB Localization using Machine Learning Methods. Bielefeld University; 2020.
Lian Sang, C., Steinhagen, B., Homburg, J. D., Adams, M., Hesse, M., & Rückert, U. (2020). Supplementary Research Data for the Paper entitled Identification of NLOS and Multi-path Conditions in UWB Localization using Machine Learning Methods. Bielefeld University. https://doi.org/10.4119/unibi/2943719
Lian Sang, Cung, Steinhagen, Bastian, Homburg, Jonas Dominik, Adams, Michael, Hesse, Marc, and Rückert, Ulrich. 2020. Supplementary Research Data for the Paper entitled Identification of NLOS and Multi-path Conditions in UWB Localization using Machine Learning Methods. Bielefeld University.
Lian Sang, C., Steinhagen, B., Homburg, J. D., Adams, M., Hesse, M., and Rückert, U. (2020). Supplementary Research Data for the Paper entitled Identification of NLOS and Multi-path Conditions in UWB Localization using Machine Learning Methods. Bielefeld University.
Lian Sang, C., et al., 2020. Supplementary Research Data for the Paper entitled Identification of NLOS and Multi-path Conditions in UWB Localization using Machine Learning Methods, Bielefeld University.
C. Lian Sang, et al., Supplementary Research Data for the Paper entitled Identification of NLOS and Multi-path Conditions in UWB Localization using Machine Learning Methods, Bielefeld University, 2020.
Lian Sang, C., Steinhagen, B., Homburg, J.D., Adams, M., Hesse, M., Rückert, U.: Supplementary Research Data for the Paper entitled Identification of NLOS and Multi-path Conditions in UWB Localization using Machine Learning Methods. Bielefeld University (2020).
Lian Sang, Cung, Steinhagen, Bastian, Homburg, Jonas Dominik, Adams, Michael, Hesse, Marc, and Rückert, Ulrich. Supplementary Research Data for the Paper entitled Identification of NLOS and Multi-path Conditions in UWB Localization using Machine Learning Methods. Bielefeld University, 2020.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2020-08-04T10:10:39Z
MD5 Prüfsumme
f783ae96bb05403ce45e87dd9b6a91a1


Material in PUB:
Wird zitiert von
Identification of NLOS and Multi-path Conditions in UWB Localization using Machine Learning Methods
Lian Sang C, Steinhagen B, Homburg JD, Adams M, Hesse M, Rückert U (2020)
Applied Sciences 10(11): 3980.

Externes Material:
Wissenschaftliche Version
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar