The Rhizoctonia solani AG1-IB (isolate 7/3/14) transcriptome during interaction with the host plant lettuce (Lactuca sativa L.)

Verwaaijen B, Wibberg D, Kröber M, Winkler A, Zrenner R, Bednarz H, Niehaus K, Grosch R, Pühler A, Schlüter A (2017)
PLOS ONE 12(5): e0177278.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 7.66 MB
Abstract / Bemerkung
The necrotrophic pathogen Rhizoctonia solani is one of the most economically important soil-borne pathogens of crop plants. Isolates of R. solani AG1-IB are the major pathogens responsible for bottom-rot of lettuce (Lactuca sativa L.) and are also responsible for diseases in other plant species. Currently, there is lack of information regarding the molecular responses in R. solani during the pathogenic interaction between the necrotrophic soil-borne pathogen and its host plant. The genome of R. solani AG1-IB (isolate 7/3/14) was recently established to obtain insights into its putative pathogenicity determinants. In this study, the transcriptional activity of R. solani AG1-IB was followed during the course of its pathogenic interaction with the host plant lettuce under controlled conditions. Based on visual observations, three distinct pathogen-host interaction zones on lettuce leaves were defined which covered different phases of disease progression on tissue inoculated with the AG1-IB (isolate 7/3/14). The zones were defined as: Zone 1—symptomless, Zone 2—light brown discoloration, and Zone 3—dark brown, necrotic lesions. Differences in R. solani hyphae structure in these three zones were investigated by microscopic observation. Transcriptional activity within these three interaction zones was used to represent the course of R. solani disease progression applying high-throughput RNA sequencing (RNA-Seq) analysis of samples collected from each Zone. The resulting three transcriptome data sets were analyzed for their highest expressed genes and for differentially transcribed genes between the respective interaction zones. Among the highest expressed genes was a group of not previously described genes which were transcribed exclusively during early stages of interaction, in Zones 1 and 2. Previously described importance of up-regulation in R. solani agglutinin genes during disease progression could be further confirmed; here, the corresponding genes exhibited extremely high transcription levels. Most differentially higher expressed transcripts were found within Zone 2. In Zone 3, the zone with the strongest degree of interaction, gene transcripts indicative of apoptotic activity were highly abundant. The transcriptome data presented in this work support previous models of the disease and interaction cycle of R. solani and lettuce and may influence effective techniques for control of this pathogen.
Erscheinungsjahr
2017
Zeitschriftentitel
PLOS ONE
Band
12
Ausgabe
5
Art.-Nr.
e0177278
ISSN
1932-6203
eISSN
1932-6203
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2912114

Zitieren

Verwaaijen B, Wibberg D, Kröber M, et al. The Rhizoctonia solani AG1-IB (isolate 7/3/14) transcriptome during interaction with the host plant lettuce (Lactuca sativa L.). PLOS ONE. 2017;12(5): e0177278.
Verwaaijen, B., Wibberg, D., Kröber, M., Winkler, A., Zrenner, R., Bednarz, H., Niehaus, K., et al. (2017). The Rhizoctonia solani AG1-IB (isolate 7/3/14) transcriptome during interaction with the host plant lettuce (Lactuca sativa L.). PLOS ONE, 12(5), e0177278. doi:10.1371/journal.pone.0177278
Verwaaijen, Bart, Wibberg, Daniel, Kröber, Magdalena, Winkler, Anika, Zrenner, Rita, Bednarz, Hanna, Niehaus, Karsten, Grosch, Rita, Pühler, Alfred, and Schlüter, Andreas. 2017. “The Rhizoctonia solani AG1-IB (isolate 7/3/14) transcriptome during interaction with the host plant lettuce (Lactuca sativa L.)”. PLOS ONE 12 (5): e0177278.
Verwaaijen, B., Wibberg, D., Kröber, M., Winkler, A., Zrenner, R., Bednarz, H., Niehaus, K., Grosch, R., Pühler, A., and Schlüter, A. (2017). The Rhizoctonia solani AG1-IB (isolate 7/3/14) transcriptome during interaction with the host plant lettuce (Lactuca sativa L.). PLOS ONE 12:e0177278.
Verwaaijen, B., et al., 2017. The Rhizoctonia solani AG1-IB (isolate 7/3/14) transcriptome during interaction with the host plant lettuce (Lactuca sativa L.). PLOS ONE, 12(5): e0177278.
B. Verwaaijen, et al., “The Rhizoctonia solani AG1-IB (isolate 7/3/14) transcriptome during interaction with the host plant lettuce (Lactuca sativa L.)”, PLOS ONE, vol. 12, 2017, : e0177278.
Verwaaijen, B., Wibberg, D., Kröber, M., Winkler, A., Zrenner, R., Bednarz, H., Niehaus, K., Grosch, R., Pühler, A., Schlüter, A.: The Rhizoctonia solani AG1-IB (isolate 7/3/14) transcriptome during interaction with the host plant lettuce (Lactuca sativa L.). PLOS ONE. 12, : e0177278 (2017).
Verwaaijen, Bart, Wibberg, Daniel, Kröber, Magdalena, Winkler, Anika, Zrenner, Rita, Bednarz, Hanna, Niehaus, Karsten, Grosch, Rita, Pühler, Alfred, and Schlüter, Andreas. “The Rhizoctonia solani AG1-IB (isolate 7/3/14) transcriptome during interaction with the host plant lettuce (Lactuca sativa L.)”. PLOS ONE 12.5 (2017): e0177278.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:49Z
MD5 Prüfsumme
32f7f5fc100fee4c0168179ac700e863


2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Binning enables efficient host genome reconstruction in cnidarian holobionts.
Celis JS, Wibberg D, Ramírez-Portilla C, Rupp O, Sczyrba A, Winkler A, Kalinowski J, Wilke T., Gigascience 7(7), 2018
PMID: 29917104

47 References

Daten bereitgestellt von Europe PubMed Central.

Autophagy in plants and phytopathogens.
Yoshimoto K, Takano Y, Sakai Y., FEBS Lett. 584(7), 2010
PMID: 20079356
ReadXplorer 2-detailed read mapping analysis and visualization from one single source.
Hilker R, Stadermann KB, Schwengers O, Anisiforov E, Jaenicke S, Weisshaar B, Zimmermann T, Goesmann A., Bioinformatics 32(24), 2016
PMID: 27540267
Septal pore cap protein SPC18, isolated from the basidiomycetous fungus Rhizoctonia solani, also resides in pore plugs.
van Driel KG, van Peer AF, Grijpstra J, Wosten HA, Verkleij AJ, Muller WH, Boekhout T., Eukaryotic Cell 7(10), 2008
PMID: 18757567
Fusarium graminearum forms mycotoxin producing infection structures on wheat.
Boenisch MJ, Schafer W., BMC Plant Biol. 11(), 2011
PMID: 21798058
N-acetylglucosamine (GlcNAc) functions in cell signaling.
Konopka JB., Scientifica (Cairo) 2012(), 2012
PMID: 23350039
dbCAN: a web resource for automated carbohydrate-active enzyme annotation.
Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y., Nucleic Acids Res. 40(Web Server issue), 2012
PMID: 22645317
Optimized protein extraction methods for proteomic analysis of Rhizoctonia solani.
Lakshman DK, Natarajan SS, Lakshman S, Garrett WM, Dhar AK., Mycologia 100(6), 2008
PMID: 19202841
Two novel fungal virulence genes specifically expressed in appressoria of the rice blast fungus.
Xue C, Park G, Choi W, Zheng L, Dean RA, Xu JR., Plant Cell 14(9), 2002
PMID: 12215509
TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions.
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL., Genome Biol. 14(4), 2013
PMID: 23618408
Mapping and quantifying mammalian transcriptomes by RNA-Seq.
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B., Nat. Methods 5(7), 2008
PMID: 18516045
Differential expression analysis for sequence count data.
Anders S, Huber W., Genome Biol. 11(10), 2010
PMID: 20979621
Development of a Rhizoctonia solani AG1-IB Specific Gene Model Enables Comparative Genome Analyses between Phytopathogenic R. solani AG1-IA, AG1-IB, AG3 and AG8 Isolates.
Wibberg D, Rupp O, Blom J, Jelonek L, Krober M, Verwaaijen B, Goesmann A, Albaum S, Grosch R, Puhler A, Schluter A., PLoS ONE 10(12), 2015
PMID: 26690577
The Gal/GalNAc-specific lectin from the plant pathogenic basidiomycete Rhizoctonia solani is a member of the ricin-B family.
Candy L, Peumans WJ, Menu-Bouaouiche L, Astoul CH, Van Damme J, Van Damme EJ, Erard M, Rouge P., Biochem. Biophys. Res. Commun. 282(3), 2001
PMID: 11401511
MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S., Mol. Biol. Evol. 30(12), 2013
PMID: 24132122
Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development.
Boyd MR, Gustafson KR, McMahon JB, Shoemaker RH, O'Keefe BR, Mori T, Gulakowski RJ, Wu L, Rivera MI, Laurencot CM, Currens MJ, Cardellina JH 2nd, Buckheit RW Jr, Nara PL, Pannell LK, Sowder RC 2nd, Henderson LE., Antimicrob. Agents Chemother. 41(7), 1997
PMID: 9210678
The evolutionarily conserved family of cyanovirin-N homologs: structures and carbohydrate specificity.
Koharudin LM, Viscomi AR, Jee JG, Ottonello S, Gronenborn AM., Structure 16(4), 2008
PMID: 18400178
Necrotroph attacks on plants: wanton destruction or covert extortion?
Laluk K, Mengiste T., Arabidopsis Book 8(), 2010
PMID: 22303261
Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research.
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M., Bioinformatics 21(18), 2005
PMID: 16081474
Establishment and interpretation of the genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB isolate 7/3/14.
Wibberg D, Jelonek L, Rupp O, Hennig M, Eikmeyer F, Goesmann A, Hartmann A, Borriss R, Grosch R, Puhler A, Schluter A., J. Biotechnol. 167(2), 2012
PMID: 23280342
A note on the neighbor-joining algorithm of Saitou and Nei.
Studier JA, Keppler KJ., Mol. Biol. Evol. 5(6), 1988
PMID: 3221794
1,4-benzoquinone reductase from Phanerochaete chrysosporium: cDNA cloning and regulation of expression.
Akileswaran L, Brock BJ, Cereghino JL, Gold MH., Appl. Environ. Microbiol. 65(2), 1999
PMID: 9925562
The evolution and pathogenic mechanisms of the rice sheath blight pathogen.
Zheng A, Lin R, Zhang D, Qin P, Xu L, Ai P, Ding L, Wang Y, Chen Y, Liu Y, Sun Z, Feng H, Liang X, Fu R, Tang C, Li Q, Zhang J, Xie Z, Deng Q, Li S, Wang S, Zhu J, Wang L, Liu H, Li P., Nat Commun 4(), 2013
PMID: 23361014
GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis.
Kwon SJ, Jin HC, Lee S, Nam MH, Chung JH, Kwon SI, Ryu CM, Park OK., Plant J. 58(2), 2008
PMID: 19077166
Genetic variation and pathogenicity of anastomosis group 2 isolates of Rhizoctonia solani in Australia.
Stodart BJ, Harvey PR, Neate SM, Melanson DL, Scott ES., Mycol. Res. 111(Pt 8), 2007
PMID: 17707626
Transcriptome analysis of the phytopathogenic fungus Rhizoctonia solani AG1-IB 7/3/14 applying high-throughput sequencing of expressed sequence tags (ESTs).
Wibberg D, Jelonek L, Rupp O, Krober M, Goesmann A, Grosch R, Puhler A, Schluter A., Fungal Biol 118(9-10), 2014
PMID: 25209639
Delta endotoxin of Bacillus thuringiensis subsp. israelensis.
Armstrong JL, Rohrmann GF, Beaudreau GS., J. Bacteriol. 161(1), 1985
PMID: 2981808
ESTuber db: an online database for Tuber borchii EST sequences.
Lazzari B, Caprera A, Cosentino C, Stella A, Milanesi L, Viotti A., BMC Bioinformatics 8 Suppl 1(), 2007
PMID: 17430557
CYP53A15 of Cochliobolus lunatus, a target for natural antifungal compounds.
Podobnik B, Stojan J, Lah L, Krasevec N, Seliskar M, Rizner TL, Rozman D, Komel R., J. Med. Chem. 51(12), 2008
PMID: 18505250
Fasciclin domain proteins are present in nostoc symbionts of lichens.
Paulsrud P, Lindblad P., Appl. Environ. Microbiol. 68(4), 2002
PMID: 11916728
The Pathogen-Host Interactions database (PHI-base): additions and future developments.
Urban M, Pant R, Raghunath A, Irvine AG, Pedro H, Hammond-Kosack KE., Nucleic Acids Res. 43(Database issue), 2014
PMID: 25414340
Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola.
Oh IS, Park AR, Bae MS, Kwon SJ, Kim YS, Lee JE, Kang NY, Lee S, Cheong H, Park OK., Plant Cell 17(10), 2005
PMID: 16126835
GalNAc/Gal-binding Rhizoctonia solani agglutinin has antiproliferative activity in Drosophila melanogaster S2 cells via MAPK and JAK/STAT signaling.
Hamshou M, Van Damme EJ, Vandenborre G, Ghesquiere B, Trooskens G, Gevaert K, Smagghe G., PLoS ONE 7(4), 2012
PMID: 22529896
WebMGA: a customizable web server for fast metagenomic sequence analysis.
Wu S, Zhu Z, Fu L, Niu B, Li W., BMC Genomics 12(), 2011
PMID: 21899761
Host-selective toxins: agents of compatibility.
Walton JD., Plant Cell 8(10), 1996
PMID: 8914323
Entomotoxic effects of fungal lectin from Rhizoctonia solani towards Spodoptera littoralis.
Hamshou M, Van Damme EJ, Smagghe G., Fungal Biol 114(1), 2009
PMID: 20965059
Dual RNA-seq of pathogen and host.
Westermann AJ, Gorski SA, Vogel J., Nat. Rev. Microbiol. 10(9), 2012
PMID: 22890146
Evidence for veratryl alcohol as a redox mediator in lignin peroxidase-catalyzed oxidation.
Goodwin DC, Aust SD, Grover TA., Biochemistry 34(15), 1995
PMID: 7711026
Autophagic fungal cell death is necessary for infection by the rice blast fungus.
Veneault-Fourrey C, Barooah M, Egan M, Wakley G, Talbot NJ., Science 312(5773), 2006
PMID: 16645096
Crystal structure of pyranose 2-oxidase from the white-rot fungus Peniophora sp.
Bannwarth M, Bastian S, Heckmann-Pohl D, Giffhorn F, Schulz GE., Biochemistry 43(37), 2004
PMID: 15362852
Comparison of DNA sequences with protein sequences.
Pearson WR, Wood T, Zhang Z, Miller W., Genomics 46(1), 1997
PMID: 9403055
Host-specific toxins: effectors of necrotrophic pathogenicity.
Friesen TL, Faris JD, Solomon PS, Oliver RP., Cell. Microbiol. 10(7), 2008
PMID: 18384660
ReadXplorer--visualization and analysis of mapped sequences.
Hilker R, Stadermann KB, Doppmeier D, Kalinowski J, Stoye J, Straube J, Winnebald J, Goesmann A., Bioinformatics 30(16), 2014
PMID: 24790157
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 28486484
PubMed | Europe PMC

Suchen in

Google Scholar