A Mitochondrial Autonomously Replicating Sequence from Pichia pastoris for Uniform High Level Recombinant Protein Production

Friehs K, Schwarzhans JP, Luttermann T, Wibberg D, Winkler A, Hübner W, Huser T, Kalinowski J (2017)
Frontiers in Microbiology 8: 780.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
OA 5.42 MB
Abstract / Bemerkung
Pichia pastoris is a non-conventional methylotrophic yeast that is widely used for recombinant protein production, typically by stably integrating the target gene into the genome as part of an expression cassette. However, the comparatively high clonal variability associated with this approach usually necessitates a time intense screening step in order to find strains with the desired productivity. Some of the factors causing this clonal variability can be overcome using episomal vectors containing an autonomously replicating sequence (ARS). Here, we report on the discovery, characterization, and application of a fragment of mitochondrial DNA from P. pastoris for use as an ARS. First encountered as an off-target event in an experiment aiming for genomic integration, the newly created circular plasmid named “pMito” consists of the expression cassette and a fragment of mitochondrial DNA. Multiple matches to known ARS consensus sequence motifs, but no exact match to known chromosomal ARS from P. pastoris were detected on the fragment, indicating the presence of a novel ARS element. Different variants of pMito were successfully used for transformation and their productivity characteristics were assayed. All analyzed clones displayed a highly uniform expression level, exceeding by up to fourfold that of a reference with a single copy integrated in its genome. Expressed GFP could be localized exclusively to the cytoplasm via super-resolution fluorescence microscopy, indicating that pMito is present in the nucleus. While expression levels were homogenous among pMito clones, an apparent upper limit of expression was visible that could not be explained based on the gene dosage. Further investigation is necessary to fully understand the bottle-neck hindering this and other ARS vectors in P. pastoris from reaching their full capability. Lastly, we could demonstrate that the mitochondrial ARS from P. pastoris is also suitable for episomal vector transformation in Saccharomyces cerevisiae, widening the potential for biotechnological application. pMito displayed strong potential to reduce clonal variability in experiments targeting recombinant protein production. These findings also showcase the as of yet largely untapped potential of mitochondrial ARS from different yeasts for biotechnological applications.
Frontiers in Microbiology
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI


Friehs K, Schwarzhans JP, Luttermann T, et al. A Mitochondrial Autonomously Replicating Sequence from Pichia pastoris for Uniform High Level Recombinant Protein Production. Frontiers in Microbiology. 2017;8: 780.
Friehs, K., Schwarzhans, J. P., Luttermann, T., Wibberg, D., Winkler, A., Hübner, W., Huser, T., et al. (2017). A Mitochondrial Autonomously Replicating Sequence from Pichia pastoris for Uniform High Level Recombinant Protein Production. Frontiers in Microbiology, 8, 780. doi:10.3389/fmicb.2017.00780
Friehs, K., Schwarzhans, J. P., Luttermann, T., Wibberg, D., Winkler, A., Hübner, W., Huser, T., and Kalinowski, J. (2017). A Mitochondrial Autonomously Replicating Sequence from Pichia pastoris for Uniform High Level Recombinant Protein Production. Frontiers in Microbiology 8:780.
Friehs, K., et al., 2017. A Mitochondrial Autonomously Replicating Sequence from Pichia pastoris for Uniform High Level Recombinant Protein Production. Frontiers in Microbiology, 8: 780.
K. Friehs, et al., “A Mitochondrial Autonomously Replicating Sequence from Pichia pastoris for Uniform High Level Recombinant Protein Production”, Frontiers in Microbiology, vol. 8, 2017, : 780.
Friehs, K., Schwarzhans, J.P., Luttermann, T., Wibberg, D., Winkler, A., Hübner, W., Huser, T., Kalinowski, J.: A Mitochondrial Autonomously Replicating Sequence from Pichia pastoris for Uniform High Level Recombinant Protein Production. Frontiers in Microbiology. 8, : 780 (2017).
Friehs, Karl, Schwarzhans, Jan Philipp, Luttermann, Tobias, Wibberg, Daniel, Winkler, Anika, Hübner, Wolfgang, Huser, Thomas, and Kalinowski, Jörn. “A Mitochondrial Autonomously Replicating Sequence from Pichia pastoris for Uniform High Level Recombinant Protein Production”. Frontiers in Microbiology 8 (2017): 780.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A Stable, Autonomously Replicating Plasmid Vector Containing Pichia pastoris Centromeric DNA.
Nakamura Y, Nishi T, Noguchi R, Ito Y, Watanabe T, Nishiyama T, Aikawa S, Hasunuma T, Ishii J, Okubo Y, Kondo A., Appl Environ Microbiol 84(15), 2018
PMID: 29802190
Towards systems metabolic engineering in Pichia pastoris.
Schwarzhans JP, Luttermann T, Geier M, Kalinowski J, Friehs K., Biotechnol Adv 35(6), 2017
PMID: 28760369

80 References

Daten bereitgestellt von Europe PubMed Central.

The structure and function of yeast ARS elements.
Newlon CS, Theis JF., Curr. Opin. Genet. Dev. 3(5), 1993
PMID: 8274858
Real-time PCR-based determination of gene copy numbers in Pichia pastoris.
Abad S, Kitz K, Hormann A, Schreiner U, Hartner FS, Glieder A., Biotechnol J 5(4), 2010
PMID: 20349461
Nuclear insertions of organellar DNA can create novel patches of functional exon sequences.
Noutsos C, Kleine T, Armbruster U, DalCorso G, Leister D., Trends Genet. 23(12), 2007
PMID: 17981356
Induction without methanol: novel regulated promoters enable high-level expression in Pichia pastoris.
Prielhofer R, Maurer M, Klein J, Wenger J, Kiziak C, Gasser B, Mattanovich D., Microb. Cell Fact. 12(), 2013
PMID: 23347568
Effects of gene dosage, promoters, and substrates on unfolded protein stress of recombinant Pichia pastoris.
Hohenblum H, Gasser B, Maurer M, Borth N, Mattanovich D., Biotechnol. Bioeng. 85(4), 2004
PMID: 14755554
Continued colonization of the human genome by mitochondrial DNA.
Ricchetti M, Tekaia F, Dujon B., PLoS Biol. 2(9), 2004
PMID: 15361937
Localization of proteins and organelles using fluorescence microscopy.
Farre JC, Shirahama-Noda K, Zhang L, Booher K, Subramani S., Methods Mol. Biol. 389(), 2007
PMID: 17951647
Consed: a graphical tool for sequence finishing.
Gordon D, Abajian C, Green P., Genome Res. 8(3), 1998
PMID: 9521923
Directed gene copy number amplification in Pichia pastoris by vector integration into the ribosomal DNA locus.
Marx H, Mecklenbrauker A, Gasser B, Sauer M, Mattanovich D., FEMS Yeast Res. 9(8), 2009
PMID: 19799640
Reliable high-throughput screening with Pichia pastoris by limiting yeast cell death phenomena.
Weis R, Luiten R, Skranc W, Schwab H, Wubbolts M, Glieder A., FEMS Yeast Res. 5(2), 2004
PMID: 15489201
Non-canonical integration events in Pichia pastoris encountered during standard transformation analysed with genome sequencing.
Schwarzhans JP, Wibberg D, Winkler A, Luttermann T, Kalinowski J, Friehs K., Sci Rep 6(), 2016
PMID: 27958335
A Toolbox of Diverse Promoters Related to Methanol Utilization: Functionally Verified Parts for Heterologous Pathway Expression in Pichia pastoris.
Vogl T, Sturmberger L, Kickenweiz T, Wasmayer R, Schmid C, Hatzl AM, Gerstmann MA, Pitzer J, Wagner M, Thallinger GG, Geier M, Glieder A., ACS Synth Biol 5(2), 2015
PMID: 26592304
Integration event induced changes in recombinant protein productivity in Pichia pastoris discovered by whole genome sequencing and derived vector optimization.
Schwarzhans JP, Wibberg D, Winkler A, Luttermann T, Kalinowski J, Friehs K., Microb. Cell Fact. 15(), 2016
PMID: 27206580
Control of protein synthesis in yeast mitochondria: the concept of translational activators.
Herrmann JM, Woellhaf MW, Bonnefoy N., Biochim. Biophys. Acta 1833(2), 2012
PMID: 22450032
High-quality genome sequence of Pichia pastoris CBS7435.
Kuberl A, Schneider J, Thallinger GG, Anderl I, Wibberg D, Hajek T, Jaenicke S, Brinkrolf K, Goesmann A, Szczepanowski R, Puhler A, Schwab H, Glieder A, Pichler H., J. Biotechnol. 154(4), 2011
PMID: 21575661
GAP promoter library for fine-tuning of gene expression in Pichia pastoris.
Qin X, Qian J, Yao G, Zhuang Y, Zhang S, Chu J., Appl. Environ. Microbiol. 77(11), 2011
PMID: 21498769
Characterization of a panARS-based episomal vector in the methylotrophic yeast Pichia pastoris for recombinant protein production and synthetic biology applications.
Camattari A, Goh A, Yip LY, Tan AH, Ng SW, Tran A, Liu G, Liachko I, Dunham MJ, Rancati G., Microb. Cell Fact. 15(1), 2016
PMID: 27515025
Functional inclusion bodies produced in the yeast Pichia pastoris.
Rueda F, Gasser B, Sanchez-Chardi A, Roldan M, Villegas S, Puxbaum V, Ferrer-Miralles N, Unzueta U, Vazquez E, Garcia-Fruitos E, Mattanovich D, Villaverde A., Microb. Cell Fact. 15(1), 2016
PMID: 27716225
Integrated single-cell analysis shows Pichia pastoris secretes protein stochastically.
Love KR, Panagiotou V, Jiang B, Stadheim TA, Love JC., Biotechnol. Bioeng. 106(2), 2010
PMID: 20148400
A systematical investigation on the genetic stability of multi-copy Pichia pastoris strains.
Zhu T, Guo M, Sun C, Qian J, Zhuang Y, Chu J, Zhang S., Biotechnol. Lett. 31(5), 2009
PMID: 19152072
Complete genome sequencing of Agrobacterium sp. H13-3, the former Rhizobium lupini H13-3, reveals a tripartite genome consisting of a circular and a linear chromosome and an accessory plasmid but lacking a tumor-inducing Ti-plasmid.
Wibberg D, Blom J, Jaenicke S, Kollin F, Rupp O, Scharf B, Schneiker-Bekel S, Sczcepanowski R, Goesmann A, Setubal JC, Schmitt R, Puhler A, Schluter A., J. Biotechnol. 155(1), 2011
PMID: 21329740
Multistep processing of the secretion leader of the extracellular protein Epx1 in Pichia pastoris and implications for protein localization.
Heiss S, Puxbaum V, Gruber C, Altmann F, Mattanovich D, Gasser B., Microbiology (Reading, Engl.) 161(7), 2015
PMID: 25934645
Mitochondrial DNA repairs double-strand breaks in yeast chromosomes.
Ricchetti M, Fairhead C, Dujon B., Nature 402(6757), 1999
PMID: 10573425
Human genetic disease caused by de novo mitochondrial-nuclear DNA transfer.
Turner C, Killoran C, Thomas NS, Rosenberg M, Chuzhanova NA, Johnston J, Kemel Y, Cooper DN, Biesecker LG., Hum. Genet. 112(3), 2003
PMID: 12545275
Promoter library designed for fine-tuned gene expression in Pichia pastoris.
Hartner FS, Ruth C, Langenegger D, Johnson SN, Hyka P, Lin-Cereghino GP, Lin-Cereghino J, Kovar K, Cregg JM, Glieder A., Nucleic Acids Res. 36(12), 2008
PMID: 18539608
Positive selection of novel peroxisome biogenesis-defective mutants of the yeast Pichia pastoris.
Johnson MA, Waterham HR, Ksheminska GP, Fayura LR, Cereghino JL, Stasyk OV, Veenhuis M, Kulachkovsky AR, Sibirny AA, Cregg JM., Genetics 151(4), 1999
PMID: 10101164
An autonomously replicating sequence for use in a wide range of budding yeasts.
Liachko I, Dunham MJ., FEMS Yeast Res. 14(2), 2013
PMID: 24205893
High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene.
Clare JJ, Rayment FB, Ballantine SP, Sreekrishna K, Romanos MA., Biotechnology (N.Y.) 9(5), 1991
PMID: 1367310
Cultivation strategies to enhance productivity of Pichia pastoris: A review.
Looser V, Bruhlmann B, Bumbak F, Stenger C, Costa M, Camattari A, Fotiadis D, Kovar K., Biotechnol. Adv. 33(6 Pt 2), 2015
PMID: 26027890
Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast.
Egner A, Jakobs S, Hell SW., Proc. Natl. Acad. Sci. U.S.A. 99(6), 2002
PMID: 11904401
MEME SUITE: tools for motif discovery and searching.
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS., Nucleic Acids Res. 37(Web Server issue), 2009
PMID: 19458158
Pichia pastoris as a host system for transformations.
Cregg JM, Barringer KJ, Hessler AY, Madden KR., Mol. Cell. Biol. 5(12), 1985
PMID: 3915774
Can too many copies spoil the broth?
Aw R, Polizzi KM., Microb. Cell Fact. 12(), 2013
PMID: 24354594
Refined Pichia pastoris reference genome sequence.
Sturmberger L, Chappell T, Geier M, Krainer F, Day KJ, Vide U, Trstenjak S, Schiefer A, Richardson T, Soriaga L, Darnhofer B, Birner-Gruenberger R, Glick BS, Tolstorukov I, Cregg J, Madden K, Glieder A., J. Biotechnol. 235(), 2016
PMID: 27084056
An episomal expression vector for screening mutant gene libraries in Pichia pastoris.
Lee CC, Williams TG, Wong DW, Robertson GH., Plasmid 54(1), 2005
PMID: 15907541
Genome-scale metabolic model of Pichia pastoris with native and humanized glycosylation of recombinant proteins.
Irani ZA, Kerkhoven EJ, Shojaosadati SA, Nielsen J., Biotechnol. Bioeng. 113(5), 2015
PMID: 26480251
Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes.
Hazkani-Covo E, Zeller RM, Martin W., PLoS Genet. 6(2), 2010
PMID: 20168995
Multifunctional yeast high-copy-number shuttle vectors.
Christianson TW, Sikorski RS, Dante M, Shero JH, Hieter P., Gene 110(1), 1992
PMID: 1544568
Promiscuous DNA in the nuclear genomes of hemiascomycetous yeasts.
Sacerdot C, Casaregola S, Lafontaine I, Tekaia F, Dujon B, Ozier-Kalogeropoulos O., FEMS Yeast Res. 8(6), 2008
PMID: 18673395
Super-resolution fluorescence microscopy.
Huang B, Bates M, Zhuang X., Annu. Rev. Biochem. 78(), 2009
PMID: 19489737
Highly efficient gene targeting in the Aspergillus niger kusA mutant.
Meyer V, Arentshorst M, El-Ghezal A, Drews AC, Kooistra R, van den Hondel CA, Ram AF., J. Biotechnol. 128(4), 2007
PMID: 17275117
Yeast DNA plasmids.
Gunge N., Annu. Rev. Microbiol. 37(), 1983
PMID: 6357054
Systems-level organization of yeast methylotrophic lifestyle.
Rußmayer H, Buchetics M, Gruber C, Valli M, Grillitsch K, Modarres G, Guerrasio R, Klavins K, Neubauer S, Drexler H, Steiger M, Troyer C, Al Chalabi A, Krebiehl G, Sonntag D, Zellnig G, Daum G, Graf AB, Altmann F, Koellensperger G, Hann S, Sauer M, Mattanovich D, Gasser B., BMC Biol. 13(), 2015
PMID: 26400155
Stress in recombinant protein producing yeasts.
Mattanovich D, Gasser B, Hohenblum H, Sauer M., J. Biotechnol. 113(1-3), 2004
PMID: 15380652
Isolation of alcohol oxidase and two other methanol regulatable genes from the yeast Pichia pastoris.
Ellis SB, Brust PF, Koutz PJ, Waters AF, Harpold MM, Gingeras TR., Mol. Cell. Biol. 5(5), 1985
PMID: 3889590
Comparative genomics and transcriptomics of Pichia pastoris.
Love KR, Shah KA, Whittaker CA, Wu J, Bartlett MC, Ma D, Leeson RL, Priest M, Borowsky J, Young SK, Love JC., BMC Genomics 17(), 2016
PMID: 27495311
Curation of the genome annotation of Pichia pastoris (Komagataella phaffii) CBS7435 from gene level to protein function.
Valli M, Tatto NE, Peymann A, Gruber C, Landes N, Ekker H, Thallinger GG, Mattanovich D, Gasser B, Graf AB., FEMS Yeast Res. 16(6), 2016
PMID: 27388471
Enzymatic assembly of DNA molecules up to several hundred kilobases.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO., Nat. Methods 6(5), 2009
PMID: 19363495
Recent advances in the genome-wide study of DNA replication origins in yeast.
Peng C, Luo H, Zhang X, Gao F., Front Microbiol 6(), 2015
PMID: 25745419
An improved protocol for the preparation of yeast cells for transformation by electroporation.
Thompson JR, Register E, Curotto J, Kurtz M, Kelly R., Yeast 14(6), 1998
PMID: 9605506
Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology.
Naatsaari L, Mistlberger B, Ruth C, Hajek T, Hartner FS, Glieder A., PLoS ONE 7(6), 2012
PMID: 22768112
Nonhomologous end joining in yeast.
Daley JM, Palmbos PL, Wu D, Wilson TE., Annu. Rev. Genet. 39(), 2005
PMID: 16285867
The PARS sequence increase the efficiency of stable Pichia pastoris transformation.
Madsen CK, Vismans G, Brinch-Pedersen H., J. Microbiol. Methods 129(), 2016
PMID: 27444547
FIMO: scanning for occurrences of a given motif.
Grant CE, Bailey TL, Noble WS., Bioinformatics 27(7), 2011
PMID: 21330290
Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production.
Ahmad M, Hirz M, Pichler H, Schwab H., Appl. Microbiol. Biotechnol. 98(12), 2014
PMID: 24743983
Yeast evolutionary genomics.
Dujon B., Nat. Rev. Genet. 11(7), 2010
PMID: 20559329
GC-rich DNA elements enable replication origin activity in the methylotrophic yeast Pichia pastoris.
Liachko I, Youngblood RA, Tsui K, Bubb KL, Queitsch C, Raghuraman MK, Nislow C, Brewer BJ, Dunham MJ., PLoS Genet. 10(3), 2014
PMID: 24603708
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ., Nucleic Acids Res. 25(17), 1997
PMID: 9254694
Genetic aspects of targeted insertion mutagenesis in yeasts.
Klinner U, Schafer B., FEMS Microbiol. Rev. 28(2), 2004
PMID: 15109785
Transcriptional terminators of RNA polymerase II are associated with yeast replication origins.
Chen S, Reger R, Miller C, Hyman LE., Nucleic Acids Res. 24(15), 1996
PMID: 8760869
Impact of the KU80 pathway on NHEJ-induced genome rearrangements in mammalian cells.
Guirouilh-Barbat J, Huck S, Bertrand P, Pirzio L, Desmaze C, Sabatier L, Lopez BS., Mol. Cell 14(5), 2004
PMID: 15175156
Auxotrophic yeast strains in fundamental and applied research.
Pronk JT., Appl. Environ. Microbiol. 68(5), 2002
PMID: 11976076


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 28512458
PubMed | Europe PMC

Suchen in

Google Scholar