New Genome Similarity Measures based on Conserved Gene Adjacencies

Dörr D, Kowada LAB, Soares de Araujo FE, Deshpande S, Dantas S, Moret BME, Stoye J (2017)
Journal of Computational Biology 24(6): 616-634.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Dörr, DanielUniBi ; Kowada, Luis Antonio B.; Soares de Araujo, Francisco EloiUniBi; Deshpande, Shachi; Dantas, Simone; Moret, Bernard M. E.; Stoye, JensUniBi
Erscheinungsjahr
2017
Zeitschriftentitel
Journal of Computational Biology
Band
24
Ausgabe
6
Seite(n)
616-634
ISSN
1066-5277
Page URI
https://pub.uni-bielefeld.de/record/2909967

Zitieren

Dörr D, Kowada LAB, Soares de Araujo FE, et al. New Genome Similarity Measures based on Conserved Gene Adjacencies. Journal of Computational Biology. 2017;24(6):616-634.
Dörr, D., Kowada, L. A. B., Soares de Araujo, F. E., Deshpande, S., Dantas, S., Moret, B. M. E., & Stoye, J. (2017). New Genome Similarity Measures based on Conserved Gene Adjacencies. Journal of Computational Biology, 24(6), 616-634. doi:10.1089/cmb.2017.0065
Dörr, Daniel, Kowada, Luis Antonio B., Soares de Araujo, Francisco Eloi, Deshpande, Shachi, Dantas, Simone, Moret, Bernard M. E., and Stoye, Jens. 2017. “New Genome Similarity Measures based on Conserved Gene Adjacencies”. Journal of Computational Biology 24 (6): 616-634.
Dörr, D., Kowada, L. A. B., Soares de Araujo, F. E., Deshpande, S., Dantas, S., Moret, B. M. E., and Stoye, J. (2017). New Genome Similarity Measures based on Conserved Gene Adjacencies. Journal of Computational Biology 24, 616-634.
Dörr, D., et al., 2017. New Genome Similarity Measures based on Conserved Gene Adjacencies. Journal of Computational Biology, 24(6), p 616-634.
D. Dörr, et al., “New Genome Similarity Measures based on Conserved Gene Adjacencies”, Journal of Computational Biology, vol. 24, 2017, pp. 616-634.
Dörr, D., Kowada, L.A.B., Soares de Araujo, F.E., Deshpande, S., Dantas, S., Moret, B.M.E., Stoye, J.: New Genome Similarity Measures based on Conserved Gene Adjacencies. Journal of Computational Biology. 24, 616-634 (2017).
Dörr, Daniel, Kowada, Luis Antonio B., Soares de Araujo, Francisco Eloi, Deshpande, Shachi, Dantas, Simone, Moret, Bernard M. E., and Stoye, Jens. “New Genome Similarity Measures based on Conserved Gene Adjacencies”. Journal of Computational Biology 24.6 (2017): 616-634.

29 References

Daten bereitgestellt von Europe PubMed Central.

Efficient tools for computing the number of breakpoints and the number of adjacencies between two genomes with duplicate genes.
Angibaud S, Fertin G, Rusu I, Thevenin A, Vialette S., J. Comput. Biol. 15(8), 2008
PMID: 18774903

AUTHOR UNKNOWN, 0
Gene order breakpoint evidence in animal mitochondrial phylogeny.
Blanchette M, Kunisawa T, Sankoff D., J. Mol. Evol. 49(2), 1999
PMID: 10441671

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Inapproximability of (1,2)-exemplar distance.
Bulteau L, Jiang M., IEEE/ACM Trans Comput Biol Bioinform 10(6), 2013
PMID: 24407297
BLAST+: architecture and applications.
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL., BMC Bioinformatics 10(), 2009
PMID: 20003500
Assignment of orthologous genes via genome rearrangement.
Chen X, Zheng J, Fu Z, Nan P, Zhong Y, Lonardi S, Jiang T., IEEE/ACM Trans Comput Biol Bioinform 2(4), 2005
PMID: 17044168
Computing the summed adjacency disruption number between two genomes with duplicate genes.
Delgado J, Lynce I, Manquinho V., J. Comput. Biol. 17(9), 2010
PMID: 20874407

AUTHOR UNKNOWN, 0

Doerr, BMC Bioinformatics 15(6), 2014
Gene family assignment-free comparative genomics.
Doerr D, Thevenin A, Stoye J., BMC Bioinformatics 13 Suppl 19(), 2012
PMID: 23281826
Phytozome: a comparative platform for green plant genomics.
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS., Nucleic Acids Res. 40(Database issue), 2011
PMID: 22110026

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Orthology detection combining clustering and synteny for very large datasets.
Lechner M, Hernandez-Rosales M, Doerr D, Wieseke N, Thevenin A, Stoye J, Hartmann RK, Prohaska SJ, Stadler PF., PLoS ONE 9(8), 2014
PMID: 25137074

Lin, 2013
On the family-free DCJ distance and similarity.
Martinez FV, Feijao P, Braga MD, Stoye J., Algorithms Mol Biol 10(), 2015
PMID: 25859276

Papadimitriou, 2003
Metrics for GO based protein semantic similarity: a systematic evaluation.
Pesquita C, Faria D, Bastos H, Ferreira AE, Falcao AO, Couto FM., BMC Bioinformatics 9 Suppl 5(), 2008
PMID: 18460186

Sankoff, 1992
Genome rearrangement with gene families.
Sankoff D., Bioinformatics 15(11), 1999
PMID: 10743557
InParanoid 8: orthology analysis between 273 proteomes, mostly eukaryotic.
Sonnhammer EL, Ostlund G., Nucleic Acids Res. 43(Database issue), 2014
PMID: 25429972
Multichromosomal median and halving problems under different genomic distances.
Tannier E, Zheng C, Sankoff D., BMC Bioinformatics 10(), 2009
PMID: 19386099
Efficient sorting of genomic permutations by translocation, inversion and block interchange.
Yancopoulos S, Attie O, Friedberg R., Bioinformatics 21(16), 2005
PMID: 15951307
Natural parameter values for generalized gene adjacency.
Yang Z, Sankoff D., J. Comput. Biol. 17(9), 2010
PMID: 20874399
Generalized gene adjacencies, graph bandwidth, and clusters in yeast evolution.
Zhu Q, Adam Z, Choi V, Sankoff D., IEEE/ACM Trans Comput Biol Bioinform 6(2), 2009
PMID: 19407346
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 28590847
PubMed | Europe PMC

Suchen in

Google Scholar