Comparative transcriptome analysis of the biocontrol strain Bacillus amyloliquefaciens FZB42 as response to biofilm formation analyzed by RNA sequencing

Kröber M, Verwaaijen B, Wibberg D, Winkler A, Pühler A, Schlüter A (2016)
Journal of Biotechnology 231: 212-223.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
The strain Bacillus amyloliquefaciens FZB42 is a plant growth promoting rhizobacterium (PGPR) and biocontrol agent known to keep infections of lettuce (Lactuca sativa) by the phytopathogen Rhizoctonia solani down. Several mechanisms, including the production of secondary metabolites possessing antimicrobial properties and induction of the host plant's systemic resistance (ISR), were proposed to explain the biocontrol effect of the strain. B. amyloliquefaciens FZB42 is able to form plaques (biofilm-like structures) on plant roots and this feature was discussed to be associated with its biocontrol properties. For this reason, formation of B. amyloliquefaciens biofilms was studied at the transcriptional level using high-throughput sequencing of whole transcriptome cDNA libraries from cells grown under biofilm-forming conditions vs. planktonic growth. Comparison of the transcriptional profiles of B. amyloliquefaciens FZB42 under these growth conditions revealed a common set of highly transcribed genes mostly associated with basic cellular functions. The Ici gene, encoding an antimicrobial peptide (AMP), was among the most highly transcribed genes of cells under both growth conditions suggesting that AMP production may contribute to biocontrol. In contrast, gene clusters coding for synthesis of secondary metabolites with antimicrobial properties were only moderately transcribed and not induced in biofilm-forming cells. Differential gene expression revealed that 331 genes were significantly up-regulated and 230 genes were down-regulated in the transcriptome of B. amyloliquefaciens FZB42 under biofilm-forming conditions in comparison to planktonic cells. Among the most highly up-regulated genes, the yvqHI operon, coding for products involved in nisin (class I bacteriocin) resistance, was identified. In addition, an operon whose products play a role in fructosamine metabolism was enhanced in its transcription. Moreover, genes involved in the production of the extracellular biofilm matrix including exopolysaccharide genes (eps) and the yqxM-tasA-sipW operon encoding amyloid fiber synthesis were up-regulated in the B. amyloliquefaciens FZB42 biofilm. On the other hand, highly down-regulated genes in biofilms are associated with synthesis, assembly and regulation of the flagellar apparatus, the degradation of aromatic compounds and the export of copper. The obtained transcriptional profile for B. amyloliquefaciens biofilm cells uncovered genes involved in its development and enabled the assessment that synthesis of secondary metabolites among other factors may contribute to the biocontrol properties of the strain. (C) 2016 Elsevier B.V. All rights reserved.
Stichworte
B. amyloliquefaciens FZB42; Secondary metabolites; Biofilm; Differential; gene expression; Transcriptome; Plant growth promotion
Erscheinungsjahr
2016
Zeitschriftentitel
Journal of Biotechnology
Band
231
Seite(n)
212-223
ISSN
0168-1656
eISSN
1873-4863
Page URI
https://pub.uni-bielefeld.de/record/2905504

Zitieren

Kröber M, Verwaaijen B, Wibberg D, Winkler A, Pühler A, Schlüter A. Comparative transcriptome analysis of the biocontrol strain Bacillus amyloliquefaciens FZB42 as response to biofilm formation analyzed by RNA sequencing. Journal of Biotechnology. 2016;231:212-223.
Kröber, M., Verwaaijen, B., Wibberg, D., Winkler, A., Pühler, A., & Schlüter, A. (2016). Comparative transcriptome analysis of the biocontrol strain Bacillus amyloliquefaciens FZB42 as response to biofilm formation analyzed by RNA sequencing. Journal of Biotechnology, 231, 212-223. doi:10.1016/j.jbiotec.2016.06.013
Kröber, Magdalena, Verwaaijen, Bart, Wibberg, Daniel, Winkler, Anika, Pühler, Alfred, and Schlüter, Andreas. 2016. “Comparative transcriptome analysis of the biocontrol strain Bacillus amyloliquefaciens FZB42 as response to biofilm formation analyzed by RNA sequencing”. Journal of Biotechnology 231: 212-223.
Kröber, M., Verwaaijen, B., Wibberg, D., Winkler, A., Pühler, A., and Schlüter, A. (2016). Comparative transcriptome analysis of the biocontrol strain Bacillus amyloliquefaciens FZB42 as response to biofilm formation analyzed by RNA sequencing. Journal of Biotechnology 231, 212-223.
Kröber, M., et al., 2016. Comparative transcriptome analysis of the biocontrol strain Bacillus amyloliquefaciens FZB42 as response to biofilm formation analyzed by RNA sequencing. Journal of Biotechnology, 231, p 212-223.
M. Kröber, et al., “Comparative transcriptome analysis of the biocontrol strain Bacillus amyloliquefaciens FZB42 as response to biofilm formation analyzed by RNA sequencing”, Journal of Biotechnology, vol. 231, 2016, pp. 212-223.
Kröber, M., Verwaaijen, B., Wibberg, D., Winkler, A., Pühler, A., Schlüter, A.: Comparative transcriptome analysis of the biocontrol strain Bacillus amyloliquefaciens FZB42 as response to biofilm formation analyzed by RNA sequencing. Journal of Biotechnology. 231, 212-223 (2016).
Kröber, Magdalena, Verwaaijen, Bart, Wibberg, Daniel, Winkler, Anika, Pühler, Alfred, and Schlüter, Andreas. “Comparative transcriptome analysis of the biocontrol strain Bacillus amyloliquefaciens FZB42 as response to biofilm formation analyzed by RNA sequencing”. Journal of Biotechnology 231 (2016): 212-223.

7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Tackling maize fusariosis: in search of Fusarium graminearum biosuppressors.
Adeniji AA, Babalola OO., Arch Microbiol 200(8), 2018
PMID: 29934785
Bacillus velezensis FZB42 in 2018: The Gram-Positive Model Strain for Plant Growth Promotion and Biocontrol.
Fan B, Wang C, Song X, Ding X, Wu L, Wu H, Gao X, Borriss R., Front Microbiol 9(), 2018
PMID: 30386322
Should the biofilm mode of life be taken into consideration for microbial biocontrol agents?
Pandin C, Le Coq D, Canette A, Aymerich S, Briandet R., Microb Biotechnol 10(4), 2017
PMID: 28205337
Agriculturally important microbial biofilms: Present status and future prospects.
Velmourougane K, Prasanna R, Saxena AK., J Basic Microbiol 57(7), 2017
PMID: 28407275
Spatial Organization Plasticity as an Adaptive Driver of Surface Microbial Communities.
Bridier A, Piard JC, Pandin C, Labarthe S, Dubois-Brissonnet F, Briandet R., Front Microbiol 8(), 2017
PMID: 28775718

72 References

Daten bereitgestellt von Europe PubMed Central.

Applications of flow cytometry to characterize bacterial physiological responses
Ambriz-Aviña, BioMed Res. Int. (), 2014
Differential expression analysis for sequence count data.
Anders S, Huber W., Genome Biol. 11(10), 2010
PMID: 20979621
Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens.
Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris B, Fickers P., Microb. Cell Fact. 8(), 2009
PMID: 19941639
Exact and complete short-read alignment to microbial genomes using Graphics Processing Unit programming.
Blom J, Jakobi T, Doppmeier D, Jaenicke S, Kalinowski J, Stoye J, Goesmann A., Bioinformatics 27(10), 2011
PMID: 21450712
Antibacterial lysine analogs that target lysine riboswitches.
Blount KF, Wang JX, Lim J, Sudarsan N, Breaker RR., Nat. Chem. Biol. 3(1), 2006
PMID: 17143270
Biofilms: the matrix revisited
Branda, Trends Microbiol. (), 2005
Adaptation of Bacillus subtilis to growth at low temperature: a combined transcriptomic and proteomic appraisal
Budde, Microbiology (Reading, England) 152(Pt 3), 2006
Adaptation of Bacillus subtilis to growth at low temperature: a combined transcriptomic and proteomic appraisal
Budde, Microbiology (Reading, England) 152(Pt 3), 2006
Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms
Cairns, Mol. Microbiol. (), 2014
Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42.
Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess WR, Reva O, Junge H, Voigt B, Jungblut PR, Vater J, Sussmuth R, Liesegang H, Strittmatter A, Gottschalk G, Borriss R., Nat. Biotechnol. 25(9), 2007
PMID: 17704766
Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens
Chen, J. Biotechnol. 140(1–2), 2009
Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease.
Chen XH, Scholz R, Borriss M, Junge H, Mogel G, Kunz S, Borriss R., J. Biotechnol. 140(1-2), 2008
PMID: 19061923
Revealing the missing expressed genes beyond the human reference genome by RNA-Seq.
Chen G, Li R, Shi L, Qi J, Hu P, Luo J, Liu M, Shi T., BMC Genomics 12(), 2011
PMID: 22133125
Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community.
Chowdhury SP, Dietel K, Randler M, Schmid M, Junge H, Borriss R, Hartmann A, Grosch R., PLoS ONE 8(7), 2013
PMID: 23935892
Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42: a review
Chowdhury, Front. Microbiol. (), 2015

AUTHOR UNKNOWN, 0
Genetic control of amadori product degradation in Bacillus subtilis via regulation of frlBONMD expression by FrlR.
Deppe VM, Klatte S, Bongaerts J, Maurer KH, O'Connell T, Meinhardt F., Appl. Environ. Microbiol. 77(9), 2011
PMID: 21398478
Ammonium utilization in Bacillus subtilis: transport and regulatory functions of NrgA and NrgB
Detsch, Microbiology 149(11), 2003

AUTHOR UNKNOWN, 0
Pathogen self-defense: mechanisms to counteract microbial antagonism,.
Duffy B, Schouten A, Raaijmakers JM., Annu Rev Phytopathol 41(), 2003
PMID: 12730392
Identification of Oxygen-Responsive Transcripts in the Silage Inoculant Lactobacillus buchneri CD034 by RNA Sequencing.
Eikmeyer FG, Heinl S, Marx H, Puhler A, Grabherr R, Schluter A., PLoS ONE 10(7), 2015
PMID: 26230316
A bioengineered nisin derivative to control biofilms of Staphylococcus pseudintermedius.
Field D, Gaudin N, Lyons F, O'Connor PM, Cotter PD, Hill C, Ross RP., PLoS ONE 10(3), 2015
PMID: 25789988
Effects of Effects of different amino acids on biofilm growth, swimming motility and twitching motility in Escherichia coli BL21
Goh, J. Biol. Life Sci. 4(2), 2013
Solution structure of LCI, a novel antimicrobial peptide from Bacillus subtilis.
Gong W, Wang J, Chen Z, Xia B, Lu G., Biochemistry 50(18), 2011
PMID: 21449609

AUTHOR UNKNOWN, 0
Selected metal ions protect Bacillus subtilis biofilms from erosion
Grumbein, Metallomics: Integrated Biomet. Sci. 6(8), 2014
Regulation of flagellar motility during biofilm formation
Guttenplan, FEMS Microbiol. Rev. (), 2013
Regulation of flagellar motility during biofilm formation
Guttenplan, FEMS Microbiol. Rev. 37(6), 2014
Engineering of Bacillus subtilis 168 for increased nisin resistance.
Hansen ME, Wangari R, Hansen EB, Mijakovic I, Jensen PR., Appl. Environ. Microbiol. 75(21), 2009
PMID: 19749059
ReadXplorer--visualization and analysis of mapped sequences.
Hilker R, Stadermann KB, Doppmeier D, Kalinowski J, Stoye J, Straube J, Winnebald J, Goesmann A., Bioinformatics 30(16), 2014
PMID: 24790157
Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect.
Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss R., Microbiology (Reading, Engl.) 148(Pt 7), 2002
PMID: 12101298

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42.
Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R., J. Bacteriol. 186(4), 2004
PMID: 14762003
DegU and YczE positively regulate the synthesis of bacillomycin D by Bacillus amyloliquefaciens strain FZB42.
Koumoutsi A, Chen XH, Vater J, Borriss R., Appl. Environ. Microbiol. 73(21), 2007
PMID: 17827323
Effect of the strain Bacillus amyloliquefaciens FZB42 on the microbial community in the rhizosphere of lettuce under field conditions analyzed by whole metagenome sequencing
Kröber, Front. Microbiol. 5(May), 2014
Coordinated patterns of cytochrome bd and lactate dehydrogenase expression in Bacillus subtilis.
Larsson JT, Rogstam A, von Wachenfeldt C., Microbiology (Reading, Engl.) 151(Pt 10), 2005
PMID: 16207915

AUTHOR UNKNOWN, 0
Functional analysis of the protein Veg, which stimulates biofilm formation in Bacillus subtilis.
Lei Y, Oshima T, Ogasawara N, Ishikawa S., J. Bacteriol. 195(8), 2013
PMID: 23378512
Biofilm development with emphasis on Bacillus subtilis
Lemon, Curr Top Microbial Immunol. 322(), 2008
Transcriptome and proteome analysis of Bacillus subtilis gene expression modulated by amino acid availability.
Mader U, Homuth G, Scharf C, Buttner K, Bode R, Hecker M., J. Bacteriol. 184(15), 2002
PMID: 12107147
Phosphorylated DegU manipulates cell fate differentiation in the Bacillus subtilis biofilm.
Marlow VL, Porter M, Hobley L, Kiley TB, Swedlow JR, Davidson FA, Stanley-Wall NR., J. Bacteriol. 196(1), 2013
PMID: 24123822
Copper induced biofilm formation and changes on photosynthetic pigment in Euglena gracilis
Morales-Calderón, Afr. J. Microbiol. Res. 6(8), 2012

AUTHOR UNKNOWN, 0
A comparative genomic view of clostridial sporulation and physiology.
Paredes CJ, Alsaker KV, Papoutsakis ET., Nat. Rev. Microbiol. 3(12), 2005
PMID: 16261177
CspB and CspL, thermostable cold-shock proteins from Thermotoga maritima.
Phadtare S, Hwang J, Severinov K, Inouye M., Genes Cells 8(10), 2003
PMID: 14531859
CopZ from Bacillus subtilis interacts in vivo with a copper exporting CPx-type ATPase CopA.
Radford DS, Kihlken MA, Borrelly GP, Harwood CR, Le Brun NE, Cavet JS., FEMS Microbiol. Lett. 220(1), 2003
PMID: 12644235
Gene expression in Bacillus subtilis surface biofilms with and without sporulation and the importance of yveR for biofilm maintenance.
Ren D, Bedzyk LA, Setlow P, Thomas SM, Ye RW, Wood TK., Biotechnol. Bioeng. 86(3), 2004
PMID: 15083514

AUTHOR UNKNOWN, 0
Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch?
Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS., Nucleic Acids Res. 31(23), 2003
PMID: 14627808
Construction and validation of a Sinorhizobium meliloti whole genome DNA microarray: Genome-wide profiling of osmoadaptive gene expression
Rüberg, J. Biotechnol. 106(2–3), 2003
Antimicrobial peptides and bacteriocins: alternatives to traditional antibiotics
Sang, Animal Health Research Reviews/Conference of Research Workers in Animal Diseases 9(2), 2008
Molecular analysis of phr peptide
Stephenson, Process. Bacillus subtilis 185(16), 2003

Stragier, Mol. Genet. Sporulation Bacillus Subtilis (), 1996
The ATPases CopA and CopB both contribute to copper resistance of the thermoacidophilic archaeon Sulfolobus solfataricus.
Vollmecke C, Drees SL, Reimann J, Albers SV, Lubben M., Microbiology (Reading, Engl.) 158(Pt 6), 2012
PMID: 22361944

AUTHOR UNKNOWN, 0
Sticking together: building a biofilm the Bacillus subtilis way.
Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R., Nat. Rev. Microbiol. 11(3), 2013
PMID: 23353768
Identification of enzymes acting on alpha-glycated amino acids in Bacillus subtilis.
Wiame E, Duquenne A, Delpierre G, Van Schaftingen E., FEBS Lett. 577(3), 2004
PMID: 15556630
The nitrogen-Regulated bacillus subtilis nrgAB operon encodes a membrane protein and a protein highly similar to the escherichia coli glnB-Encoded PI
Wray, Protein 176(1), 1994
Surprising arginine biosynthesis: a reappraisal of the enzymology and evolution of the pathway in microorganisms
Xu, Microbiol. Mol. Biol. Rev.: MMBR 71(1), 2007
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 27312701
PubMed | Europe PMC

Suchen in

Google Scholar