Proteotyping of biogas plant microbiomes separates biogas plants according to process temperature and reactor type

Heyer R, Benndorf D, Kohrs F, De Vrieze J, Boon N, Hoffmann M, Rapp E, Schlüter A, Sczyrba A, Reichl U (2016)
Biotechnology for Biofuels 9(1): 155.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ; ;
Abstract / Bemerkung
BACKGROUND: Methane yield and biogas productivity of biogas plants (BGPs) depend on microbial community structure and function, substrate supply, and general biogas process parameters. So far, however, relatively little is known about correlations between microbial community function and process parameters. To close this knowledge gap, microbial communities of 40 samples from 35 different industrial biogas plants were evaluated by a metaproteomics approach in this study. RESULTS: Liquid chromatography coupled to tandem mass spectrometry (Orbitrap Elite Hybrid Ion Trap-Orbitrap Mass Spectrometer) of all 40 samples as triplicate enabled the identification of 3138 different metaproteins belonging to 162 biological processes and 75 different taxonomic orders. The respective database searches were performed against UniProtKB/Swiss-Prot and seven metagenome databases. Subsequent clustering and principal component analysis of these data allowed for the identification of four main clusters associated with mesophile and thermophile process conditions, the use of upflow anaerobic sludge blanket reactors and BGP feeding with sewage sludge. Observations confirm a previous phylogenetic study of the same BGP samples that was based on 16S rRNA gene sequencing by De Vrieze et al. (Water Res 75:312-323, 2015). In particular, we identified similar microbial key players of biogas processes, namely Bacillales, Enterobacteriales, Bacteriodales, Clostridiales, Rhizobiales and Thermoanaerobacteriales as well as Methanobacteriales, Methanosarcinales and Methanococcales. For the elucidation of the main biomass degradation pathways, the most abundant 1% of metaproteins was assigned to the KEGG map1200 representing the central carbon metabolism. Additionally, the effect of the process parameters (i) temperature, (ii) organic loading rate (OLR), (iii) total ammonia nitrogen (TAN), and (iv) sludge retention time (SRT) on these pathways was investigated. For example, high TAN correlated with hydrogenotrophic methanogens and bacterial one-carbon metabolism, indicating syntrophic acetate oxidation. CONCLUSIONS: This is the first large-scale metaproteome study of BGPs. Proteotyping of BGPs reveals general correlations between the microbial community structure and its function with process parameters. The monitoring of changes on the level of microbial key functions or even of the microbial community represents a well-directed tool for the identification of process problems and disturbances.Graphical abstractCorrelation between the different orders and process parameter, as well as principle component analysis of all investigated biogas plants based on the identified metaproteins.
Erscheinungsjahr
Zeitschriftentitel
Biotechnology for Biofuels
Band
9
Ausgabe
1
Art.-Nr.
155
eISSN
PUB-ID

Zitieren

Heyer R, Benndorf D, Kohrs F, et al. Proteotyping of biogas plant microbiomes separates biogas plants according to process temperature and reactor type. Biotechnology for Biofuels. 2016;9(1): 155.
Heyer, R., Benndorf, D., Kohrs, F., De Vrieze, J., Boon, N., Hoffmann, M., Rapp, E., et al. (2016). Proteotyping of biogas plant microbiomes separates biogas plants according to process temperature and reactor type. Biotechnology for Biofuels, 9(1), 155. doi:10.1186/s13068-016-0572-4
Heyer, R., Benndorf, D., Kohrs, F., De Vrieze, J., Boon, N., Hoffmann, M., Rapp, E., Schlüter, A., Sczyrba, A., and Reichl, U. (2016). Proteotyping of biogas plant microbiomes separates biogas plants according to process temperature and reactor type. Biotechnology for Biofuels 9:155.
Heyer, R., et al., 2016. Proteotyping of biogas plant microbiomes separates biogas plants according to process temperature and reactor type. Biotechnology for Biofuels, 9(1): 155.
R. Heyer, et al., “Proteotyping of biogas plant microbiomes separates biogas plants according to process temperature and reactor type”, Biotechnology for Biofuels, vol. 9, 2016, : 155.
Heyer, R., Benndorf, D., Kohrs, F., De Vrieze, J., Boon, N., Hoffmann, M., Rapp, E., Schlüter, A., Sczyrba, A., Reichl, U.: Proteotyping of biogas plant microbiomes separates biogas plants according to process temperature and reactor type. Biotechnology for Biofuels. 9, : 155 (2016).
Heyer, R., Benndorf, D., Kohrs, F., De Vrieze, J., Boon, N., Hoffmann, M., Rapp, E., Schlüter, Andreas, Sczyrba, Alexander, and Reichl, U. “Proteotyping of biogas plant microbiomes separates biogas plants according to process temperature and reactor type”. Biotechnology for Biofuels 9.1 (2016): 155.

6 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

More Is Not Always Better: Evaluation of 1D and 2D-LC-MS/MS Methods for Metaproteomics.
Hinzke T, Kouris A, Hughes RA, Strous M, Kleiner M., Front Microbiol 10(), 2019
PMID: 30837968
Linking Microbial Community Structure and Function During the Acidified Anaerobic Digestion of Grass.
Joyce A, Ijaz UZ, Nzeteu C, Vaughan A, Shirran SL, Botting CH, Quince C, O'Flaherty V, Abram F., Front Microbiol 9(), 2018
PMID: 29619022
Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants.
Hassa J, Maus I, Off S, Pühler A, Scherer P, Klocke M, Schlüter A., Appl Microbiol Biotechnol 102(12), 2018
PMID: 29713790
Intermittent fasting for microbes: how discontinuous feeding increases functional stability in anaerobic digestion.
Bonk F, Popp D, Weinrich S, Sträuber H, Kleinsteuber S, Harms H, Centler F., Biotechnol Biofuels 11(), 2018
PMID: 30323859
Proteotyping of laboratory-scale biogas plants reveals multiple steady-states in community composition.
Kohrs F, Heyer R, Bissinger T, Kottler R, Schallert K, Püttker S, Behne A, Rapp E, Benndorf D, Reichl U., Anaerobe 46(), 2017
PMID: 28189830
Assessing species biomass contributions in microbial communities via metaproteomics.
Kleiner M, Thorson E, Sharp CE, Dong X, Liu D, Li C, Strous M., Nat Commun 8(1), 2017
PMID: 29146960

63 References

Daten bereitgestellt von Europe PubMed Central.

Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome.
De Vrieze J, Saunders AM, He Y, Fang J, Nielsen PH, Verstraete W, Boon N., Water Res. 75(), 2015
PMID: 25819618

AUTHOR UNKNOWN, 0
Electron transfer in syntrophic communities of anaerobic bacteria and archaea.
Stams AJ, Plugge CM., Nat. Rev. Microbiol. 7(8), 2009
PMID: 19609258
Biotechnological intensification of biogas production.
Bagi Z, Acs N, Balint B, Horvath L, Dobo K, Perei KR, Rakhely G, Kovacs KL., Appl. Microbiol. Biotechnol. 76(2), 2007
PMID: 17503035
Community shifts in a well-operating agricultural biogas plant: how process variations are handled by the microbiome.
Theuerl S, Kohrs F, Benndorf D, Maus I, Wibberg D, Schluter A, Kausmann R, Heiermann M, Rapp E, Reichl U, Puhler A, Klocke M., Appl. Microbiol. Biotechnol. 99(18), 2015
PMID: 25998656
Long-term monitoring reveals stable and remarkably similar microbial communities in parallel full-scale biogas reactors digesting energy crops.
Lucas R, Kuchenbuch A, Fetzer I, Harms H, Kleinsteuber S., FEMS Microbiol. Ecol. 91(3), 2015
PMID: 25764564
Repeated pulse feeding induces functional stability in anaerobic digestion.
De Vrieze J, Verstraete W, Boon N., Microb Biotechnol 6(4), 2013
PMID: 23302421
Bacterial community structures are unique and resilient in full-scale bioenergy systems.
Werner JJ, Knights D, Garcia ML, Scalfone NB, Smith S, Yarasheski K, Cummings TA, Beers AR, Knight R, Angenent LT., Proc. Natl. Acad. Sci. U.S.A. 108(10), 2011
PMID: 21368115
Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials.
Ziganshin AM, Liebetrau J, Proter J, Kleinsteuber S., Appl. Microbiol. Biotechnol. 97(11), 2013
PMID: 23624683
The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology.
Schluter A, Bekel T, Diaz NN, Dondrup M, Eichenlaub R, Gartemann KH, Krahn I, Krause L, Kromeke H, Kruse O, Mussgnug JH, Neuweger H, Niehaus K, Puhler A, Runte KJ, Szczepanowski R, Tauch A, Tilker A, Viehover P, Goesmann A., J. Biotechnol. 136(1-2), 2008
PMID: 18597880
Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing.
Zakrzewski M, Goesmann A, Jaenicke S, Junemann S, Eikmeyer F, Szczepanowski R, Al-Soud WA, Sorensen S, Puhler A, Schluter A., J. Biotechnol. 158(4), 2012
PMID: 22342600
Metaproteomics of complex microbial communities in biogas plants.
Heyer R, Kohrs F, Reichl U, Benndorf D., Microb Biotechnol 8(5), 2015
PMID: 25874383
Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques.
Vanwonterghem I, Jensen PD, Ho DP, Batstone DJ, Tyson GW., Curr. Opin. Biotechnol. 27(), 2013
PMID: 24863897
Metagenome and metaproteome analyses of microbial communities in mesophilic biogas-producing anaerobic batch fermentations indicate concerted plant carbohydrate degradation.
Hanreich A, Schimpf U, Zakrzewski M, Schluter A, Benndorf D, Heyer R, Rapp E, Puhler A, Reichl U, Klocke M., Syst. Appl. Microbiol. 36(5), 2013
PMID: 23694815
Species identification and profiling of complex microbial communities using shotgun Illumina sequencing of 16S rRNA amplicon sequences.
Ong SH, Kukkillaya VU, Wilm A, Lay C, Ho EX, Low L, Hibberd ML, Nagarajan N., PLoS ONE 8(4), 2013
PMID: 23579286
Amplification by PCR artificially reduces the proportion of the rare biosphere in microbial communities.
Gonzalez JM, Portillo MC, Belda-Ferre P, Mira A., PLoS ONE 7(1), 2012
PMID: 22253843
The MetaProteomeAnalyzer: a powerful open-source software suite for metaproteomics data analysis and interpretation.
Muth T, Behne A, Heyer R, Kohrs F, Benndorf D, Hoffmann M, Lehteva M, Reichl U, Martens L, Rapp E., J. Proteome Res. 14(3), 2015
PMID: 25660940

AUTHOR UNKNOWN, 0
Characterization of microbial biofilms in a thermophilic biogas system by high-throughput metagenome sequencing.
Rademacher A, Zakrzewski M, Schluter A, Schonberg M, Szczepanowski R, Goesmann A, Puhler A, Klocke M., FEMS Microbiol. Ecol. 79(3), 2011
PMID: 22126587
UniRef: comprehensive and non-redundant UniProt reference clusters.
Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH., Bioinformatics 23(10), 2007
PMID: 17379688
A comparative cluster analysis of nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase histochemistry in the brains of amphibians.
Pinelli C, Rastogi RK, Scandurra A, Jadhao AG, Aria M, D'Aniello B., J. Comp. Neurol. 522(13), 2014
PMID: 24549578
Metaproteome analysis of the microbial communities in agricultural biogas plants.
Heyer R, Kohrs F, Benndorf D, Rapp E, Kausmann R, Heiermann M, Klocke M, Reichl U., N Biotechnol 30(6), 2013
PMID: 23369865
Sample prefractionation with liquid isoelectric focusing enables in depth microbial metaproteome analysis of mesophilic and thermophilic biogas plants.
Kohrs F, Heyer R, Magnussen A, Benndorf D, Muth T, Behne A, Rapp E, Kausmann R, Heiermann M, Klocke M, Reichl U., Anaerobe 29(), 2013
PMID: 24309213
How to get more out of molecular fingerprints: practical tools for microbial ecology.
Marzorati M, Wittebolle L, Boon N, Daffonchio D, Verstraete W., Environ. Microbiol. 10(6), 2008
PMID: 18331337
Initial community evenness favours functionality under selective stress.
Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, De Vos P, Verstraete W, Boon N., Nature 458(7238), 2009
PMID: 19270679
Beyond the Venn diagram: the hunt for a core microbiome.
Shade A, Handelsman J., Environ. Microbiol. 14(1), 2011
PMID: 22004523
Dual investigation of methanogenic processes by quantitative PCR and quantitative microscopic fingerprinting.
Kim YS, Westerholm M, Scherer P., FEMS Microbiol. Lett. 360(1), 2014
PMID: 25175903
The IWA Anaerobic Digestion Model No 1 (ADM1).
Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WT, Siegrist H, Vavilin VA., Water Sci. Technol. 45(10), 2002
PMID: 12188579
Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions.
Stolze Y, Zakrzewski M, Maus I, Eikmeyer F, Jaenicke S, Rottmann N, Siebner C, Puhler A, Schluter A., Biotechnol Biofuels 8(), 2015
PMID: 25688290
Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons.
Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF., J. Bacteriol. 186(9), 2004
PMID: 15090503
Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae.
Karakashev D, Batstone DJ, Trably E, Angelidaki I., Appl. Environ. Microbiol. 72(7), 2006
PMID: 16820524
Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea.
Liu Y, Whitman WB., Ann. N. Y. Acad. Sci. 1125(), 2008
PMID: 18378594

AUTHOR UNKNOWN, 0
Polyphasic analyses of methanogenic archaeal communities in agricultural biogas plants.
Nettmann E, Bergmann I, Pramschufer S, Mundt K, Plogsties V, Herrmann C, Klocke M., Appl. Environ. Microbiol. 76(8), 2010
PMID: 20154117
Metaproteome analysis of sewage sludge from membrane bioreactors.
Kuhn R, Benndorf D, Rapp E, Reichl U, Palese LL, Pollice A., Proteomics 11(13), 2011
PMID: 21604373
Metaproteomics of activated sludge from a wastewater treatment plant—a pilot study
Püttker S, Kohrs F, Benndorf D, Heyer R, Rapp E, Reichl U., 2015
Fractionation of biogas plant sludge material improves metaproteomic characterization to investigate metabolic activity of microbial communities
Kohrs F, Wolter S, Benndorf D, Heyer R, Hoffmann M, Rapp E., 2015
Metaproteomics of cellulose methanisation under thermophilic conditions reveals a surprisingly high proteolytic activity.
Lu F, Bize A, Guillot A, Monnet V, Madigou C, Chapleur O, Mazeas L, He P, Bouchez T., ISME J 8(1), 2013
PMID: 23949661
Deeply sequenced metagenome and metatranscriptome of a biogas-producing microbial community from an agricultural production-scale biogas plant.
Bremges A, Maus I, Belmann P, Eikmeyer F, Winkler A, Albersmeier A, Puhler A, Schluter A, Sczyrba A., Gigascience 4(), 2015
PMID: 26229594
Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy.
Campanaro S, Treu L, Kougias PG, De Francisci D, Valle G, Angelidaki I., Biotechnol Biofuels 9(), 2016
PMID: 26839589
The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum).
Pierce E, Xie G, Barabote RD, Saunders E, Han CS, Detter JC, Richardson P, Brettin TS, Das A, Ljungdahl LG, Ragsdale SW., Environ. Microbiol. 10(10), 2008
PMID: 18631365
Mechanism of the glycine cleavage reaction. Properties of the reverse reaction catalyzed by T-protein.
Okamura-Ikeda K, Fujiwara K, Motokawa Y., J. Biol. Chem. 262(14), 1987
PMID: 3571285
Low-temperature anaerobic digestion is associated with differential methanogenic protein expression.
Gunnigle E, Siggins A, Botting CH, Fuszard M, O'Flaherty V, Abram F., FEMS Microbiol. Lett. 362(10), 2015
PMID: 25862577
First insights into the syntrophic acetate-oxidizing bacteria--a genetic study.
Muller B, Sun L, Schnurer A., Microbiologyopen 2(1), 2012
PMID: 23239474
Dependence of the specific growth rate of methanogenic mutualistic cocultures on the methanogen
Archer DB, Powell GE., 1985
Thermotogales
Huber R, Hannig M., 2006
A metabolic quotient for methanogenic Archaea.
Munk B, Bauer C, Gronauer A, Lebuhn M., Water Sci. Technol. 66(11), 2012
PMID: 23032759
Biogas production: current state and perspectives.
Weiland P., Appl. Microbiol. Biotechnol. 85(4), 2009
PMID: 19777226
Inhibition of anaerobic digestion process: a review.
Chen Y, Cheng JJ, Creamer KS., Bioresour. Technol. 99(10), 2007
PMID: 17399981
[Reliable micromethod for determination of the protein content in tissue homogenates]
Popov N, Schmitt M, Schulzeck S, Matthies H., Acta Biol. Med. Ger. 34(9), 1975
PMID: 1221733
Probability-based protein identification by searching sequence databases using mass spectrometry data.
Perkins DN, Pappin DJ, Creasy DM, Cottrell JS., Electrophoresis 20(18), 1999
PMID: 10612281
Reorganizing the protein space at the Universal Protein Resource (UniProt).
UniProt Consortium, Apweiler R, Jesus Martin M, O'onovan C, Magrane M, Alam-Faruque Y, Antunes R, Barrera Casanova E, Bely B, Bingley M, Bower L, Bursteinas B, Mun Chan W, Chavali G, Da Silva A, Dimmer E, Eberhardt R, Fazzini F, Fedotov A, Garavelli J, Castro LG, Gardner M, Hieta R, Huntley R, Jacobsen J, Legge D, Liu W, Luo J, Orchard S, Patient S, Pichler K, Poggioli D, Pontikos N, Pundir S, Rosanoff S, Sawford T, Sehra H, Turner E, Wardell T, Watkins X, Corbett M, Donnelly M, van Rensburg P, Goujon M, McWilliam H, Lopez R, Xenarios I, Bougueleret L, Bridge A, Poux S, Redaschi N, Argoud-Puy G, Auchincloss A, Axelsen K, Baratin D, Blatter MC, Boeckmann B, Bolleman J, Bollondi L, Boutet E, Braconi Quintaje S, Breuza L, deCastro E, Cerutti L, Coudert E, Cuche B, Cusin I, Doche M, Dornevil D, Duvaud S, Estreicher A, Famiglietti L, Feuermann M, Gehant S, Ferro S, Gasteiger E, Gerritsen V, Gos A, Gruaz-Gumowski N, Hinz U, Hulo C, Hulo N, James J, Jimenez S, Jungo F, Kappler T, Keller G, Lara V, Lemercier P, Lieberherr D, Martin X, Masson P, Moinat M, Morgat A, Paesano S, Pedruzzi I, Pilbout S, Pozzato M, Pruess M, Rivoire C, Roechert B, Schneider M, Sigrist C, Sonesson K, Staehli S, Stanley E, Stutz A, Sundaram S, Tognolli M, Verbregue L, Veuthey AL, Wu CH, Arighi CN, Arminski L, Barker WC, Chen C, Chen Y, Dubey P, Huang H, Kukreja A, Laiho K, Mazumder R, McGarvey P, Natale DA, Natarajan TG, Roberts NV, Suzek BE, Vinayaka C, Wang Q, Wang Y, Yeh LS, Zhang J., Nucleic Acids Res. 40(Database issue), 2011
PMID: 22102590
The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013.
Vizcaino JA, Cote RG, Csordas A, Dianes JA, Fabregat A, Foster JM, Griss J, Alpi E, Birim M, Contell J, O'Kelly G, Schoenegger A, Ovelleiro D, Perez-Riverol Y, Reisinger F, Rios D, Wang R, Hermjakob H., Nucleic Acids Res. 41(Database issue), 2012
PMID: 23203882
The ENZYME database in 2000.
Bairoch A., Nucleic Acids Res. 28(1), 2000
PMID: 10592255
KEGG: kyoto encyclopedia of genes and genomes.
Kanehisa M, Goto S., Nucleic Acids Res. 28(1), 2000
PMID: 10592173
Charting the proteomes of organisms with unsequenced genomes by MALDI-quadrupole time-of-flight mass spectrometry and BLAST homology searching.
Shevchenko A, Sunyaev S, Loboda A, Shevchenko A, Bork P, Ens W, Standing KG., Anal. Chem. 73(9), 2001
PMID: 11354471

AUTHOR UNKNOWN, 0
GPLOM: the generalized plot matrix for visualizing multidimensional multivariate data.
Im JF, McGuffin MJ, Leung R., IEEE Trans Vis Comput Graph 19(12), 2013
PMID: 24051827

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 27462366
PubMed | Europe PMC

Suchen in

Google Scholar