Integration event induced changes in recombinant protein productivity in Pichia pastoris discovered by whole genome sequencing and derived vector optimization

Schwarzhans JP, Wibberg D, Winkler A, Luttermann T, Kalinowski J, Friehs K (2016)
Microbial Cell Factories 15: 84.

Download
OA 2.23 MB
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Abstract / Bemerkung
Background The classic AOX1 replacement approach is still one of the most often used techniques for expression of recombinant proteins in the methylotrophic yeast Pichia pastoris. Although this approach is largely successful, it frequently delivers clones with unpredicted production characteristics and a work-intense screening process is required to find the strain with desired productivity. Results In this project 845 P. pastoris clones, transformed with a GFP expression cassette, were analyzed for their methanol-utilization (Mut)-phenotypes, GFP gene expression levels and gene copy numbers. Several groups of strains with irregular features were identified. Such features include GFP expression that is markedly higher or lower than expected based on gene copy number as well as strains that grew under selective conditions but where the GFP gene cassette and its expression could not be detected. From these classes of strains 31 characteristic clones were selected and their genomes sequenced. By correlating the assembled genome data with the experimental phenotypes novel insights were obtained. These comprise a clear connection between productivity and cassette-to-cassette orientation in the genome, the occurrence of false-positive clones due to a secondary recombination event, and lower total productivity due to the presence of untransformed cells within the isolates were discovered. To cope with some of these problems, the original vector was optimized by replacing the AOX1 terminator, preventing the occurrence of false-positive clones due to the secondary recombination event. Conclusions Standard methods for transformation of P. pastoris led to a multitude of unintended and sometimes detrimental integration events, lowering total productivity. By documenting the connections between productivity and integration event we obtained a deeper understanding of the genetics of mutation in P. pastoris. These findings and the derived improved mutagenesis and transformation procedures and tools will help other scientists working on recombinant protein production in P. pastoris and similar non-conventional yeasts.
Erscheinungsjahr
Zeitschriftentitel
Microbial Cell Factories
Band
15
Art.-Nr.
84
ISSN
Finanzierungs-Informationen
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
PUB-ID

Zitieren

Schwarzhans JP, Wibberg D, Winkler A, Luttermann T, Kalinowski J, Friehs K. Integration event induced changes in recombinant protein productivity in Pichia pastoris discovered by whole genome sequencing and derived vector optimization. Microbial Cell Factories. 2016;15: 84.
Schwarzhans, J. P., Wibberg, D., Winkler, A., Luttermann, T., Kalinowski, J., & Friehs, K. (2016). Integration event induced changes in recombinant protein productivity in Pichia pastoris discovered by whole genome sequencing and derived vector optimization. Microbial Cell Factories, 15, 84. doi:10.1186/s12934-016-0486-7
Schwarzhans, J. P., Wibberg, D., Winkler, A., Luttermann, T., Kalinowski, J., and Friehs, K. (2016). Integration event induced changes in recombinant protein productivity in Pichia pastoris discovered by whole genome sequencing and derived vector optimization. Microbial Cell Factories 15:84.
Schwarzhans, J.P., et al., 2016. Integration event induced changes in recombinant protein productivity in Pichia pastoris discovered by whole genome sequencing and derived vector optimization. Microbial Cell Factories, 15: 84.
J.P. Schwarzhans, et al., “Integration event induced changes in recombinant protein productivity in Pichia pastoris discovered by whole genome sequencing and derived vector optimization”, Microbial Cell Factories, vol. 15, 2016, : 84.
Schwarzhans, J.P., Wibberg, D., Winkler, A., Luttermann, T., Kalinowski, J., Friehs, K.: Integration event induced changes in recombinant protein productivity in Pichia pastoris discovered by whole genome sequencing and derived vector optimization. Microbial Cell Factories. 15, : 84 (2016).
Schwarzhans, Jan Philipp, Wibberg, Daniel, Winkler, Anika, Luttermann, Tobias, Kalinowski, Jörn, and Friehs, Karl. “Integration event induced changes in recombinant protein productivity in Pichia pastoris discovered by whole genome sequencing and derived vector optimization”. Microbial Cell Factories 15 (2016): 84.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2016-11-29T14:06:21Z

15 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Ameliorating the Metabolic Burden of the Co-expression of Secreted Fungal Cellulases in a High Lipid-Accumulating Yarrowia lipolytica Strain by Medium C/N Ratio and a Chemical Chaperone.
Wei H, Wang W, Alper HS, Xu Q, Knoshaug EP, Van Wychen S, Lin CY, Luo Y, Decker SR, Himmel ME, Zhang M., Front Microbiol 9(), 2018
PMID: 30687267
Methanol independent induction in Pichia pastoris by simple derepressed overexpression of single transcription factors.
Vogl T, Sturmberger L, Fauland PC, Hyden P, Fischer JE, Schmid C, Thallinger GG, Geier M, Glieder A., Biotechnol Bioeng 115(4), 2018
PMID: 29280481
Effect of Plasmid Design and Type of Integration Event on Recombinant Protein Expression in Pichia pastoris.
Vogl T, Gebbie L, Palfreyman RW, Speight R., Appl Environ Microbiol 84(6), 2018
PMID: 29330186
Improved microscale cultivation of Pichia pastoris for clonal screening.
Eck A, Schmidt M, Hamer S, Ruff AJ, Förster J, Schwaneberg U, Blank LM, Wiechert W, Oldiges M., Fungal Biol Biotechnol 5(), 2018
PMID: 29750118
Engineered bidirectional promoters enable rapid multi-gene co-expression optimization.
Vogl T, Kickenweiz T, Pitzer J, Sturmberger L, Weninger A, Biggs BW, Köhler EM, Baumschlager A, Fischer JE, Hyden P, Wagner M, Baumann M, Borth N, Geier M, Ajikumar PK, Glieder A., Nat Commun 9(1), 2018
PMID: 30181586
Expressing anti-HIV VRC01 antibody using the murine IgG1 secretion signal in Pichia pastoris.
Aw R, McKay PF, Shattock RJ, Polizzi KM., AMB Express 7(1), 2017
PMID: 28342171
A Mitochondrial Autonomously Replicating Sequence from Pichia pastoris for Uniform High Level Recombinant Protein Production.
Schwarzhans JP, Luttermann T, Wibberg D, Winkler A, Hübner W, Huser T, Kalinowski J, Friehs K., Front Microbiol 8(), 2017
PMID: 28512458
Multicopy plasmid integration in Komagataella phaffii mediated by a defective auxotrophic marker.
Betancur MO, Reis VCB, Nicola AM, De Marco JL, de Moraes LMP, Torres FAG., Microb Cell Fact 16(1), 2017
PMID: 28595601
Towards systems metabolic engineering in Pichia pastoris.
Schwarzhans JP, Luttermann T, Geier M, Kalinowski J, Friehs K., Biotechnol Adv 35(6), 2017
PMID: 28760369
Systems biotechnology for protein production in Pichia pastoris.
Zahrl RJ, Peña DA, Mattanovich D, Gasser B., FEMS Yeast Res 17(7), 2017
PMID: 28934418
GoldenPiCS: a Golden Gate-derived modular cloning system for applied synthetic biology in the yeast Pichia pastoris.
Prielhofer R, Barrero JJ, Steuer S, Gassler T, Zahrl R, Baumann K, Sauer M, Mattanovich D, Gasser B, Marx H., BMC Syst Biol 11(1), 2017
PMID: 29221460
Non-canonical integration events in Pichia pastoris encountered during standard transformation analysed with genome sequencing.
Schwarzhans JP, Wibberg D, Winkler A, Luttermann T, Kalinowski J, Friehs K., Sci Rep 6(), 2016
PMID: 27958335

60 References

Daten bereitgestellt von Europe PubMed Central.

Pichia pastoris: protein production host and model organism for biomedical research.
Gasser B, Prielhofer R, Marx H, Maurer M, Nocon J, Steiger M, Puxbaum V, Sauer M, Mattanovich D., Future Microbiol 8(2), 2013
PMID: 23374125
Recombinant protein expression in Pichia pastoris.
Cregg JM, Cereghino JL, Shi J, Higgins DR., Mol. Biotechnol. 16(1), 2000
PMID: 11098467
Modeling of growth and energy metabolism of Pichia pastoris producing a fusion protein
Jahic M, Rotticci-Mulder J, Martinelle M, Hult K, Enfors SO., 2002
Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production.
Ahmad M, Hirz M, Pichler H, Schwab H., Appl. Microbiol. Biotechnol. 98(12), 2014
PMID: 24743983
Heterologous protein production using the Pichia pastoris expression system.
Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM., Yeast 22(4), 2005
PMID: 15704221
Recent patents on the Pichia pastoris expression system: expanding the toolbox for recombinant protein production.
Bollok M, Resina D, Valero F, Ferrer P., Recent Pat Biotechnol 3(3), 2009
PMID: 19747151
Biopharmaceutical discovery and production in yeast.
Meehl MA, Stadheim TA., Curr. Opin. Biotechnol. 30(), 2014
PMID: 25014890
Genetic aspects of targeted insertion mutagenesis in yeasts.
Klinner U, Schafer B., FEMS Microbiol. Rev. 28(2), 2004
PMID: 15109785
Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway.
Krainer FW, Dietzsch C, Hajek T, Herwig C, Spadiut O, Glieder A., Microb. Cell Fact. 11(), 2012
PMID: 22330134
Synthetic core promoters for Pichia pastoris.
Vogl T, Ruth C, Pitzer J, Kickenweiz T, Glieder A., ACS Synth Biol 3(3), 2013
PMID: 24187969
Mxr1p, a key regulator of the methanol utilization pathway and peroxisomal genes in Pichia pastoris.
Lin-Cereghino GP, Godfrey L, de la Cruz BJ, Johnson S, Khuongsathiene S, Tolstorukov I, Yan M, Lin-Cereghino J, Veenhuis M, Subramani S, Cregg JM., Mol. Cell. Biol. 26(3), 2006
PMID: 16428444
Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology.
Naatsaari L, Mistlberger B, Ruth C, Hajek T, Hartner FS, Glieder A., PLoS ONE 7(6), 2012
PMID: 22768112
Novel genetic tools for Hansenula polymorpha.
Saraya R, Krikken AM, Kiel JA, Baerends RJ, Veenhuis M, van der Klei IJ., FEMS Yeast Res. 12(3), 2011
PMID: 22129301
Increased homologous integration frequency in Yarrowia lipolytica strains defective in non-homologous end-joining.
Kretzschmar A, Otto C, Holz M, Werner S, Hubner L, Barth G., Curr. Genet. 59(1-2), 2013
PMID: 23423527
Genome wide distribution of illegitimate recombination events in Kluyveromyces lactis.
Kegel A, Martinez P, Carter SD, Astrom SU., Nucleic Acids Res. 34(5), 2006
PMID: 16549875
High-quality genome sequence of Pichia pastoris CBS7435.
Kuberl A, Schneider J, Thallinger GG, Anderl I, Wibberg D, Hajek T, Jaenicke S, Brinkrolf K, Goesmann A, Szczepanowski R, Puhler A, Schwab H, Glieder A, Pichler H., J. Biotechnol. 154(4), 2011
PMID: 21575661
Genome sequence of the recombinant protein production host Pichia pastoris.
De Schutter K, Lin YC, Tiels P, Van Hecke A, Glinka S, Weber-Lehmann J, Rouze P, Van de Peer Y, Callewaert N., Nat. Biotechnol. 27(6), 2009
PMID: 19465926
Genome-scale analysis of library sorting (GALibSo): Isolation of secretion enhancing factors for recombinant protein production in Pichia pastoris.
Stadlmayr G, Benakovitsch K, Gasser B, Mattanovich D, Sauer M., Biotechnol. Bioeng. 105(3), 2010
PMID: 19816964
Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement.
Chung BK, Selvarasu S, Andrea C, Ryu J, Lee H, Ahn J, Lee H, Lee DY., Microb. Cell Fact. 9(), 2010
PMID: 20594333
Genome-scale metabolic model of methylotrophic yeast Pichia pastoris and its use for in silico analysis of heterologous protein production.
Sohn SB, Graf AB, Kim TY, Gasser B, Maurer M, Ferrer P, Mattanovich D, Lee SY., Biotechnol J 5(7), 2010
PMID: 20503221
Improved green fluorescent protein by molecular evolution using DNA shuffling.
Crameri A, Whitehorn EA, Tate E, Stemmer WP., Nat. Biotechnol. 14(3), 1996
PMID: 9630892
Reliable high-throughput screening with Pichia pastoris by limiting yeast cell death phenomena.
Weis R, Luiten R, Skranc W, Schwab H, Wubbolts M, Glieder A., FEMS Yeast Res. 5(2), 2004
PMID: 15489201
Promoter library designed for fine-tuned gene expression in Pichia pastoris.
Hartner FS, Ruth C, Langenegger D, Johnson SN, Hyka P, Lin-Cereghino GP, Lin-Cereghino J, Kovar K, Cregg JM, Glieder A., Nucleic Acids Res. 36(12), 2008
PMID: 18539608
Real-time PCR-based determination of gene copy numbers in Pichia pastoris.
Abad S, Kitz K, Hormann A, Schreiner U, Hartner FS, Glieder A., Biotechnol J 5(4), 2010
PMID: 20349461
Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris.
Cregg JM, Madden KR, Barringer KJ, Thill GP, Stillman CA., Mol. Cell. Biol. 9(3), 1989
PMID: 2657390
Production of mouse epidermal growth factor in yeast: high-level secretion using Pichia pastoris strains containing multiple gene copies.
Clare JJ, Romanos MA, Rayment FB, Rowedder JE, Smith MA, Payne MM, Sreekrishna K, Henwood CA., Gene 105(2), 1991
PMID: 1937016
Can too many copies spoil the broth?
Aw R, Polizzi KM., Microb. Cell Fact. 12(), 2013
PMID: 24354594
Directed gene copy number amplification in Pichia pastoris by vector integration into the ribosomal DNA locus.
Marx H, Mecklenbrauker A, Gasser B, Sauer M, Mattanovich D., FEMS Yeast Res. 9(8), 2009
PMID: 19799640
Effect of copy number on the expression levels of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris.
Vassileva A, Chugh DA, Swaminathan S, Khanna N., Protein Expr. Purif. 21(1), 2001
PMID: 11162389
Enhancement of protein secretion in Pichia pastoris by overexpression of protein disulfide isomerase.
Inan M, Aryasomayajula D, Sinha J, Meagher MM., Biotechnol. Bioeng. 93(4), 2006
PMID: 16255058
Efficient generation of multi-copy strains for optimizing secretory expression of porcine insulin precursor in yeast Pichia pastoris.
Zhu T, Guo M, Tang Z, Zhang M, Zhuang Y, Chu J, Zhang S., J. Appl. Microbiol. 107(3), 2009
PMID: 19486418
Consed: a graphical tool for sequence finishing.
Gordon D, Abajian C, Green P., Genome Res. 8(3), 1998
PMID: 9521923
A systematical investigation on the genetic stability of multi-copy Pichia pastoris strains.
Zhu T, Guo M, Sun C, Qian J, Zhuang Y, Chu J, Zhang S., Biotechnol. Lett. 31(5), 2009
PMID: 19152072
High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene.
Clare JJ, Rayment FB, Ballantine SP, Sreekrishna K, Romanos MA., Biotechnology (N.Y.) 9(5), 1991
PMID: 1367310
Collision events between RNA polymerases in convergent transcription studied by atomic force microscopy.
Crampton N, Bonass WA, Kirkham J, Rivetti C, Thomson NH., Nucleic Acids Res. 34(19), 2006
PMID: 17012275
Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds
Mumberg D, Müller R, Funk M., 1995
Identification and characterisation of novel Pichia pastoris promoters for heterologous protein production.
Stadlmayr G, Mecklenbrauker A, Rothmuller M, Maurer M, Sauer M, Mattanovich D, Gasser B., J. Biotechnol. 150(4), 2010
PMID: 20933554
Induction without methanol: novel regulated promoters enable high-level expression in Pichia pastoris.
Prielhofer R, Maurer M, Klein J, Wenger J, Kiziak C, Gasser B, Mattanovich D., Microb. Cell Fact. 12(), 2013
PMID: 23347568

AUTHOR UNKNOWN, 0
Restriction site free cloning (RSFC) plasmid family for seamless, sequence independent cloning in Pichia pastoris.
Vogl T, Ahmad M, Krainer FW, Schwab H, Glieder A., Microb. Cell Fact. 14(), 2015
PMID: 26169367
A Toolbox of Diverse Promoters Related to Methanol Utilization: Functionally Verified Parts for Heterologous Pathway Expression in Pichia pastoris.
Vogl T, Sturmberger L, Kickenweiz T, Wasmayer R, Schmid C, Hatzl AM, Gerstmann MA, Pitzer J, Wagner M, Thallinger GG, Geier M, Glieder A., ACS Synth Biol 5(2), 2015
PMID: 26592304
Enzymatic assembly of DNA molecules up to several hundred kilobases.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO., Nat. Methods 6(5), 2009
PMID: 19363495
Insights into the completely annotated genome of Lactobacillus buchneri CD034, a strain isolated from stable grass silage.
Heinl S, Wibberg D, Eikmeyer F, Szczepanowski R, Blom J, Linke B, Goesmann A, Grabherr R, Schwab H, Puhler A, Schluter A., J. Biotechnol. 161(2), 2012
PMID: 22465289
The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110.
Schwientek P, Szczepanowski R, Ruckert C, Kalinowski J, Klein A, Selber K, Wehmeier UF, Stoye J, Puhler A., BMC Genomics 13(), 2012
PMID: 22443545
Establishment and interpretation of the genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB isolate 7/3/14.
Wibberg D, Jelonek L, Rupp O, Hennig M, Eikmeyer F, Goesmann A, Hartmann A, Borriss R, Grosch R, Puhler A, Schluter A., J. Biotechnol. 167(2), 2012
PMID: 23280342
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ., Nucleic Acids Res. 25(17), 1997
PMID: 9254694
Complete genome sequence of the methanogenic neotype strain Methanobacterium formicicum MF(T.).
Maus I, Stantscheff R, Wibberg D, Stolze Y, Winkler A, Puhler A, Konig H, Schluter A., J. Biotechnol. 192 Pt A(), 2014
PMID: 25270020
Complete genome sequencing of Agrobacterium sp. H13-3, the former Rhizobium lupini H13-3, reveals a tripartite genome consisting of a circular and a linear chromosome and an accessory plasmid but lacking a tumor-inducing Ti-plasmid.
Wibberg D, Blom J, Jaenicke S, Kollin F, Rupp O, Scharf B, Schneiker-Bekel S, Sczcepanowski R, Goesmann A, Setubal JC, Schmitt R, Puhler A, Schluter A., J. Biotechnol. 155(1), 2011
PMID: 21329740

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 27206580
PubMed | Europe PMC

Suchen in

Google Scholar