Development of a Rhizoctonia solani AG1-IB Specific Gene Model Enables Comparative Genome Analyses between Phytopathogenic R-solani AG1-IA, AG1-IB, AG3 and AG8 Isolates

Wibberg D, Rupp O, Blom J, Jelonek L, Kröber M, Verwaaijen B, Goesmann A, Albaum S, Grosch R, Pühler A, Schlüter A (2015)
Plos One 10(12): e0144769.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 724.86 KB
Abstract / Bemerkung
Rhizoctonia solani, a soil-born plant pathogenic basidiomycetous fungus, affects various economically important agricultural and horticultural crops. The draft genome sequence for the R. solani AG1-IB isolate 7/3/14 as well as a corresponding transcriptome dataset (Expressed Sequence Tags-ESTs) were established previously. Development of a specific R. solani AG1-IB gene model based on GMAP transcript mapping within the eukaryotic gene prediction platform AUGUSTUS allowed detection of new genes and provided insights into the gene structure of this fungus. In total, 12,616 genes were recognized in the genome of the AG1-IB isolate. Analysis of predicted genes by means of different bioinformatics tools revealed new genes whose products potentially are involved in degradation of plant cell wall components, melanin formation and synthesis of secondary metabolites. Comparative genome analyses between members of different R. solani anastomosis groups, namely AG1-IA, AG3 and AG8 and the newly annotated R. solani AG1-IB genome were performed within the comparative genomics platform EDGAR. It appeared that only 21 to 28% of all genes encoded in the draft genomes of the different strains were identified as core genes. Based on Average Nucleotide Identity (ANI) and Average Amino-acid Identity (AAI) analyses, considerable sequence differences between isolates representing different anastomosis groups were identified. However, R. solani isolates form a distinct cluster in relation to other fungi of the phylum Basidiomycota. The isolate representing AG1-IB encodes significant more genes featuring predictable functions in secondary metabolite production compared to other completely sequenced R. solani strains. The newly established R. solani AG1-IB 7/3/14 gene layout now provides a reliable basis for post-genomics studies.
Erscheinungsjahr
2015
Zeitschriftentitel
Plos One
Band
10
Ausgabe
12
Art.-Nr.
e0144769
ISSN
1932-6203
eISSN
1932-6203
Page URI
https://pub.uni-bielefeld.de/record/2901297

Zitieren

Wibberg D, Rupp O, Blom J, et al. Development of a Rhizoctonia solani AG1-IB Specific Gene Model Enables Comparative Genome Analyses between Phytopathogenic R-solani AG1-IA, AG1-IB, AG3 and AG8 Isolates. Plos One. 2015;10(12): e0144769.
Wibberg, D., Rupp, O., Blom, J., Jelonek, L., Kröber, M., Verwaaijen, B., Goesmann, A., et al. (2015). Development of a Rhizoctonia solani AG1-IB Specific Gene Model Enables Comparative Genome Analyses between Phytopathogenic R-solani AG1-IA, AG1-IB, AG3 and AG8 Isolates. Plos One, 10(12), e0144769. doi:10.1371/journal.pone.0144769
Wibberg, Daniel, Rupp, Oliver, Blom, Jochen, Jelonek, Lukas, Kröber, Magdalena, Verwaaijen, Bart, Goesmann, Alexander, et al. 2015. “Development of a Rhizoctonia solani AG1-IB Specific Gene Model Enables Comparative Genome Analyses between Phytopathogenic R-solani AG1-IA, AG1-IB, AG3 and AG8 Isolates”. Plos One 10 (12): e0144769.
Wibberg, D., Rupp, O., Blom, J., Jelonek, L., Kröber, M., Verwaaijen, B., Goesmann, A., Albaum, S., Grosch, R., Pühler, A., et al. (2015). Development of a Rhizoctonia solani AG1-IB Specific Gene Model Enables Comparative Genome Analyses between Phytopathogenic R-solani AG1-IA, AG1-IB, AG3 and AG8 Isolates. Plos One 10:e0144769.
Wibberg, D., et al., 2015. Development of a Rhizoctonia solani AG1-IB Specific Gene Model Enables Comparative Genome Analyses between Phytopathogenic R-solani AG1-IA, AG1-IB, AG3 and AG8 Isolates. Plos One, 10(12): e0144769.
D. Wibberg, et al., “Development of a Rhizoctonia solani AG1-IB Specific Gene Model Enables Comparative Genome Analyses between Phytopathogenic R-solani AG1-IA, AG1-IB, AG3 and AG8 Isolates”, Plos One, vol. 10, 2015, : e0144769.
Wibberg, D., Rupp, O., Blom, J., Jelonek, L., Kröber, M., Verwaaijen, B., Goesmann, A., Albaum, S., Grosch, R., Pühler, A., Schlüter, A.: Development of a Rhizoctonia solani AG1-IB Specific Gene Model Enables Comparative Genome Analyses between Phytopathogenic R-solani AG1-IA, AG1-IB, AG3 and AG8 Isolates. Plos One. 10, : e0144769 (2015).
Wibberg, Daniel, Rupp, Oliver, Blom, Jochen, Jelonek, Lukas, Kröber, Magdalena, Verwaaijen, Bart, Goesmann, Alexander, Albaum, Stefan, Grosch, Rita, Pühler, Alfred, and Schlüter, Andreas. “Development of a Rhizoctonia solani AG1-IB Specific Gene Model Enables Comparative Genome Analyses between Phytopathogenic R-solani AG1-IA, AG1-IB, AG3 and AG8 Isolates”. Plos One 10.12 (2015): e0144769.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:36Z
MD5 Prüfsumme
5e1339f69cd820f45236c628cffb124b


11 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A comprehensive analysis of the Lactuca sativa, L. transcriptome during different stages of the compatible interaction with Rhizoctonia solani.
Verwaaijen B, Wibberg D, Winkler A, Zrenner R, Bednarz H, Niehaus K, Grosch R, Pühler A, Schlüter A., Sci Rep 9(1), 2019
PMID: 31076623
Outbreak of Invasive Wound Mucormycosis in a Burn Unit Due to Multiple Strains of Mucor circinelloides f. circinelloides Resolved by Whole-Genome Sequencing.
Garcia-Hermoso D, Criscuolo A, Lee SC, Legrand M, Chaouat M, Denis B, Lafaurie M, Rouveau M, Soler C, Schaal JV, Mimoun M, Mebazaa A, Heitman J, Dromer F, Brisse S, Bretagne S, Alanio A., MBio 9(2), 2018
PMID: 29691339
Complete Genome Sequencing of Acinetobacter baumannii Strain K50 Discloses the Large Conjugative Plasmid pK50a Encoding Carbapenemase OXA-23 and Extended-Spectrum β-Lactamase GES-11.
Wibberg D, Salto IP, Eikmeyer FG, Maus I, Winkler A, Nordmann P, Pühler A, Poirel L, Schlüter A., Antimicrob Agents Chemother 62(5), 2018
PMID: 29463529
Three previously unrecognised classes of biosynthetic enzymes revealed during the production of xenovulene A.
Schor R, Schotte C, Wibberg D, Kalinowski J, Cox RJ., Nat Commun 9(1), 2018
PMID: 29773797
Plant microbial diversity is suggested as the key to future biocontrol and health trends.
Berg G, Köberl M, Rybakova D, Müller H, Grosch R, Smalla K., FEMS Microbiol Ecol 93(5), 2017
PMID: 28430944
The Rhizoctonia solani AG1-IB (isolate 7/3/14) transcriptome during interaction with the host plant lettuce (Lactuca sativa L.).
Verwaaijen B, Wibberg D, Kröber M, Winkler A, Zrenner R, Bednarz H, Niehaus K, Grosch R, Pühler A, Schlüter A., PLoS One 12(5), 2017
PMID: 28486484
Draft genome sequence of the potato pathogen Rhizoctonia solani AG3-PT isolate Ben3.
Wibberg D, Genzel F, Verwaaijen B, Blom J, Rupp O, Goesmann A, Zrenner R, Grosch R, Pühler A, Schlüter A., Arch Microbiol 199(7), 2017
PMID: 28597196
Transcriptome analysis reveals the host selection fitness mechanisms of the Rhizoctonia solani AG1IA pathogen.
Xia Y, Fei B, He J, Zhou M, Zhang D, Pan L, Li S, Liang Y, Wang L, Zhu J, Li P, Zheng A., Sci Rep 7(1), 2017
PMID: 28860554
Comparative secretome analysis of Rhizoctonia solani isolates with different host ranges reveals unique secretomes and cell death inducing effectors.
Anderson JP, Sperschneider J, Win J, Kidd B, Yoshida K, Hane J, Saunders DGO, Singh KB., Sci Rep 7(1), 2017
PMID: 28874693
An assemblage of Frankia Cluster II strains from California contains the canonical nod genes and also the sulfotransferase gene nodH.
Nguyen TV, Wibberg D, Battenberg K, Blom J, Vanden Heuvel B, Berry AM, Kalinowski J, Pawlowski K., BMC Genomics 17(1), 2016
PMID: 27729005

36 References

Daten bereitgestellt von Europe PubMed Central.

Review. Biology and Systematics of the form genus Rhizoctonia
AUTHOR UNKNOWN, 2006
Characterization of AG-13, a Newly Reported Anastomosis Group of Rhizoctonia solani.
Carling DE, Baird RE, Gitaitis RD, Brainard KA, Kuninaga S., Phytopathology 92(8), 2002
PMID: 18942969
Establishment and interpretation of the genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB isolate 7/3/14.
Wibberg D, Jelonek L, Rupp O, Hennig M, Eikmeyer F, Goesmann A, Hartmann A, Borriss R, Grosch R, Puhler A, Schluter A., J. Biotechnol. 167(2), 2012
PMID: 23280342
Improved genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB 7/3/14 as established by deep mate-pair sequencing on the MiSeq (Illumina) system.
Wibberg D, Rupp O, Jelonek L, Krober M, Verwaaijen B, Blom J, Winkler A, Goesmann A, Grosch R, Puhler A, Schluter A., J. Biotechnol. 203(), 2015
PMID: 25801332
The evolution and pathogenic mechanisms of the rice sheath blight pathogen
AUTHOR UNKNOWN, 2013
Draft Genome Sequence of the Plant-Pathogenic Soil Fungus Rhizoctonia solani Anastomosis Group 3 Strain Rhs1AP
AUTHOR UNKNOWN, 2014
Genome Sequencing and Comparative Genomics of the Broad Host-Range Pathogen Rhizoctonia solani AG8
AUTHOR UNKNOWN, 2014
Transcriptome analysis of the phytopathogenic fungus Rhizoctonia solani AG1-IB 7/3/14 applying high-throughput sequencing of expressed sequence tags (ESTs).
Wibberg D, Jelonek L, Rupp O, Krober M, Goesmann A, Grosch R, Puhler A, Schluter A., Fungal Biol 118(9-10), 2014
PMID: 25209639
GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses
AUTHOR UNKNOWN, 2005
Computational Inference of Homologous Gene Structures in the Human Genome
AUTHOR UNKNOWN, 2001
AUGUSTUS: ab initio prediction of alternative transcripts
AUTHOR UNKNOWN, 2006
SnowyOwl: accurate prediction of fungal genes by using RNA-Seq and homology information to select among ab initio models.
Reid I, O'Toole N, Zabaneh O, Nourzadeh R, Dahdouli M, Abdellateef M, Gordon PM, Soh J, Butler G, Sensen CW, Tsang A., BMC Bioinformatics 15(), 2014
PMID: 24980894
EDGAR: A software framework for the comparative analysis of prokaryotic genomes
AUTHOR UNKNOWN, 2009
GMAP: a genomic mapping and alignment program for mRNA and EST sequences
AUTHOR UNKNOWN, 2005
ASTALAVISTA: dynamic and flexible analysis of alternative splicing events in custom gene datasets
AUTHOR UNKNOWN, 2007
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
AUTHOR UNKNOWN, 1997
Fast gapped-read alignment with Bowtie 2.
Langmead B, Salzberg SL., Nat. Methods 9(4), 2012
PMID: 22388286
The Sequence Analysis and Management System -- SAMS-2.0: data management and sequence analysis adapted to changing requirements from traditional sanger sequencing to ultrafast sequencing technologies.
Bekel T, Henckel K, Kuster H, Meyer F, Mittard Runte V, Neuweger H, Paarmann D, Rupp O, Zakrzewski M, Puhler A, Stoye J, Goesmann A., J. Biotechnol. 140(1-2), 2009
PMID: 19297685
Construction of a public CHO cell line transcript database using versatile bioinformatics analysis pipelines
AUTHOR UNKNOWN, 2014
GenDB--an open source genome annotation system for prokaryote genomes.
Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Puhler A., Nucleic Acids Res. 31(8), 2003
PMID: 12682369
LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons.
Ellinghaus D, Kurtz S, Willhoeft U., BMC Bioinformatics 9(), 2008
PMID: 18194517
Fine-grained annotation and classification of de novo predicted LTR retrotransposons.
Steinbiss S, Willhoeft U, Gremme G, Kurtz S., Nucleic Acids Res. 37(21), 2009
PMID: 19786494
Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus)
AUTHOR UNKNOWN, 2010
Endophytic Life Strategies Decoded by Genome and Transcriptome Analyses of the Mutualistic Root Symbiont Piriformospora indica
AUTHOR UNKNOWN, 2011
The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans
AUTHOR UNKNOWN, 2005

AUTHOR UNKNOWN, 0
Genomic insights that advance the species definition for prokaryotes.
Konstantinidis KT, Tiedje JM., Proc. Natl. Acad. Sci. U.S.A. 102(7), 2005
PMID: 15701695
DNA-DNA hybridization values and their relationship to whole-genome sequence similarities.
Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM., Int. J. Syst. Evol. Microbiol. 57(Pt 1), 2007
PMID: 17220447
The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis
AUTHOR UNKNOWN, 2008
Cross-kingdom patterns of alternative splicing and splice recognition.
McGuire AM, Pearson MD, Neafsey DE, Galagan JE., Genome Biol. 9(3), 2008
PMID: 18321378
AUGUSTUS: A web server for gene prediction in eukaryotes that allows user-defined constraints
AUTHOR UNKNOWN, 2005
LTR Retrotransposons in Fungi
AUTHOR UNKNOWN, 2011
The role of cutinase in fungal pathogenicity.
Schafer W., Trends Microbiol. 1(2), 1993
PMID: 8044466
Mobile elements and mitochondrial genome expansion in the soil fungus and potato pathogen Rhizoctonia solani AG-3.
Losada L, Pakala SB, Fedorova ND, Joardar V, Shabalina SA, Hostetler J, Pakala SM, Zafar N, Thomas E, Rodriguez-Carres M, Dean R, Vilgalys R, Nierman WC, Cubeta MA., FEMS Microbiol. Lett. 352(2), 2014
PMID: 24461055
Improved genome assembly and evidence-based global gene model set for the chordate Ciona intestinalis: new insight into intron and operon populations
AUTHOR UNKNOWN, 2008
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 26690577
PubMed | Europe PMC

Suchen in

Google Scholar