Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control

Dallmann C, Dürr V, Schmitz J (2016)
Proceedings of the Royal Society B: Biological Sciences 283(1823): 20151708.

Zeitschriftenaufsatz | Veröffentlicht| Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Determining the mechanical output of limb joints is critical for understanding the control of complex motor behaviours such as walking. In the case of insect walking, the neural infrastructure for single-joint control is well described. However, a detailed description of the motor output in form of time-varying joint torques is lacking. Here, we determine joint torquesin the stick insect to identify leg joint function in the control of body height and propulsion. Torques were determined by measuring whole-body kinematics and ground reaction forces in freely walking animals. We demonstrate that despite strong differences in morphology and posture, stick insects show a functional division of joints similar to other insect model systems. Propulsion was generated by strong depression torques about the coxa–trochanter joint, not by retraction or flexion/extension torques. Torques about the respective thorax–coxa and femur–tibia joints were often directed opposite to fore–aft forces and joint movements. This suggests a posture-dependent mechanism that counteracts collapse of the leg under body load and directs the resultant force vector such that strong depression torques can control both body height and propulsion. Our findings parallel propulsive mechanisms described in other walking, jumping and flying insects, and challenge current control models of insect walking.
Erscheinungsjahr
2016
Zeitschriftentitel
Proceedings of the Royal Society B: Biological Sciences
Band
283
Ausgabe
1823
Art.-Nr.
20151708
ISSN
0962-8452, 1471-2954
Page URI
https://pub.uni-bielefeld.de/record/2900609

Zitieren

Dallmann C, Dürr V, Schmitz J. Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control. Proceedings of the Royal Society B: Biological Sciences. 2016;283(1823): 20151708.
Dallmann, C., Dürr, V., & Schmitz, J. (2016). Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control. Proceedings of the Royal Society B: Biological Sciences, 283(1823), 20151708. doi:10.1098/rspb.2015.1708
Dallmann, C., Dürr, V., and Schmitz, J. (2016). Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control. Proceedings of the Royal Society B: Biological Sciences 283:20151708.
Dallmann, C., Dürr, V., & Schmitz, J., 2016. Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control. Proceedings of the Royal Society B: Biological Sciences, 283(1823): 20151708.
C. Dallmann, V. Dürr, and J. Schmitz, “Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control”, Proceedings of the Royal Society B: Biological Sciences, vol. 283, 2016, : 20151708.
Dallmann, C., Dürr, V., Schmitz, J.: Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control. Proceedings of the Royal Society B: Biological Sciences. 283, : 20151708 (2016).
Dallmann, Chris, Dürr, Volker, and Schmitz, Josef. “Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control”. Proceedings of the Royal Society B: Biological Sciences 283.1823 (2016): 20151708.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Force dynamics and synergist muscle activation in stick insects: the effects of using joint torques as mechanical stimuli.
Zill SN, Dallmann CJ, Büschges A, Chaudhry S, Schmitz J., J Neurophysiol 120(4), 2018
PMID: 30020837
Fiber-type distribution in insect leg muscles parallels similarities and differences in the functional role of insect walking legs.
Godlewska-Hammel E, Büschges A, Gruhn M., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 203(10), 2017
PMID: 28597315
Intra- and intersegmental influences among central pattern generating networks in the walking system of the stick insect.
Mantziaris C, Bockemühl T, Holmes P, Borgmann A, Daun S, Büschges A., J Neurophysiol 118(4), 2017
PMID: 28724783

39 References

Daten bereitgestellt von Europe PubMed Central.


Winter DA., 1990
Biomechanical analyses of rat locomotion during walking and climbing as a base for the design and construction of climbing robots
Andrada E, Mämpel J, Schmidt A, Fischer MS, Karguth A, Witte H., 2010
Relationship between ankle muscle and joint kinetics during the stance phase of locomotion in the cat.
Fowler EG, Gregor RJ, Hodgson JA, Roy RR., J Biomech 26(4-5), 1993
PMID: 8478350
Torque patterns of the limbs of small therian mammals during locomotion on flat ground.
Witte H, Biltzinger J, Hackert R, Schilling N, Schmidt M, Reich C, Fischer MS., J. Exp. Biol. 205(Pt 9), 2002
PMID: 11948209
Mechanosensory feedback in walking: From joint control to locomotor patterns.
Buschges A, Gruhn M., Advances in insect physiology. 34(), 2008
PMID: IND44011216
A single muscle's multifunctional control potential of body dynamics for postural control and running.
Sponberg S, Spence AJ, Mullens CH, Full RJ., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1570), 2011
PMID: 21502129
Neural control of unloaded leg posture and of leg swing in stick insect, cockroach, and mouse differs from that in larger animals.
Hooper SL, Guschlbauer C, Blumel M, Rosenbaum P, Gruhn M, Akay T, Buschges A., J. Neurosci. 29(13), 2009
PMID: 19339606
The forces exerted on the substrate by walking and stationary crickets
Harris J, Ghiradella H., 1980
Leg design in hexapedal runners.
Full RJ, Blickhan R, Ting LH., J. Exp. Biol. 158(), 1991
PMID: 1919412
Level locomotion in wood ants: evidence for grounded running.
Reinhardt L, Blickhan R., J. Exp. Biol. 217(Pt 13), 2014
PMID: 24744414
The function of the legs in the free walking stick insect Carausius morosus
Cruse H., 1976
Spatial co-ordination of foot contacts in unrestrained climbing insects.
Theunissen LM, Vikram S, Durr V., J. Exp. Biol. 217(Pt 18), 2014
PMID: 25013102
Adaptive motor behavior in insects.
Ritzmann RE, Buschges A., Curr. Opin. Neurobiol. 17(6), 2007
PMID: 18308559
Behaviour-based modelling of hexapod locomotion: linking biology and technical application.
Durr V, Schmitz J, Cruse H., Arthropod structure & development. 33(3), 2004
PMID: IND43653723
Insects use two distinct classes of steps during unrestrained locomotion.
Theunissen LM, Durr V., PLoS ONE 8(12), 2013
PMID: 24376877
Three-dimensional kinematics and limb kinetic energy of running cockroaches.
Kram R, Wong B, Full RJ., J. Exp. Biol. 200(Pt 13), 1997
PMID: 9232006
The control of walking in orthoptera. I. Leg movements in normal walking
Burns MD., 1973
Controlling a system with redundant degrees of freedom. I. Torque distribution in still standing stick insects.
Levy J, Cruse H., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 194(8), 2008
PMID: 18642005
Movement of joint angles in the legs of a walking insect, Carausius morosus
Cruse H, Bartling C., 1995

Spong M, Hutchinson S, Vidyasagar M., 2006

Rabiner L, Juang B-H., 1993
Natural neural output that produces highly variable locomotory movements.
Hooper SL, Guschlbauer C, von Uckermann G, Buschges A., J. Neurophysiol. 96(4), 2006
PMID: 16775206
Walking on a 'peg leg': extensor muscle activities and sensory feedback after distal leg denervation in cockroaches.
Noah JA, Quimby L, Frazier SF, Zill SN., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 190(3), 2004
PMID: 14727135
The mechanics of elevation control in locust jumping.
Sutton GP, Burrows M., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 194(6), 2008
PMID: 18373101
The mechanics of azimuth control in jumping by froghopper insects.
Sutton GP, Burrows M., J. Exp. Biol. 213(Pt 9), 2010
PMID: 20400624
In vivo time-resolved microtomography reveals the mechanics of the blowfly flight motor.
Walker SM, Schwyn DA, Mokso R, Wicklein M, Muller T, Doube M, Stampanoni M, Krapp HG, Taylor GK., PLoS Biol. 12(3), 2014
PMID: 24667677
Dynamic simulation of insect walking.
Ekeberg O, Blumel M, Buschges A., Arthropod structure & development. 33(3), 2004
PMID: IND43653726
Force encoding in stick insect legs delineates a reference frame for motor control.
Zill SN, Schmitz J, Chaudhry S, Buschges A., J. Neurophysiol. 108(5), 2012
PMID: 22673329

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26791608
PubMed | Europe PMC

Suchen in

Google Scholar