Stable phase-shift despite quasi-rhythmic movements: a CPG-driven dynamic model of active tactile exploration in an insect

Harischandra N, Krause AF, Dürr V (2015)
Frontiers in Computational Neuroscience 9: 107.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
An essential component of autonomous and flexible behaviour in animals is active exploration of the environment, allowing for perception-guided planning and control of actions. An important sensory system involved is active touch. Here, we introduce a general modelling framework of Central Pattern Generators (CPGs) for movement generation in active tactile exploration behaviour. The CPG consists of two network levels: (i) phase-coupled Hopf oscillators for rhythm generation, and (ii) pattern formation networks for capturing the frequency and phase characteristics of individual joint oscillations. The model captured the natural, quasi-rhythmic joint kinematics as observed in coordinated antennal movements of walking stick insects. Moreover, it successfully produced tactile exploration behaviour on a three-dimensional skeletal model of the insect antennal system with physically realistic parameters. The effect of proprioceptor ablations could be simulated by changing the amplitude and offset parameters of the joint oscillators, only. As in the animal, the movement of both antennal joints was coupled with a stable phase difference, despite the quasi-rhythmicity of the joint angle time courses. We found that the phase-lead of the distal scape-pedicel joint relative to the proximal head-scape joint was essential for producing the natural tactile exploration behaviour and, thus, for tactile efficiency. For realistic movement patterns, the phase-lead could vary within a limited range of 10 to 30 degrees only. Tests with artificial movement patterns strongly suggest that this phase sensitivity is not a matter of the frequency composition of the natural movement pattern. Based on our modelling results, we propose that a constant phase difference is coded into the CPG of the antennal motor system and that proprioceptors are acting locally to regulate the joint movement amplitude.
Erscheinungsjahr
2015
Zeitschriftentitel
Frontiers in Computational Neuroscience
Band
9
Art.-Nr.
107
ISSN
1662-5188
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2766749

Zitieren

Harischandra N, Krause AF, Dürr V. Stable phase-shift despite quasi-rhythmic movements: a CPG-driven dynamic model of active tactile exploration in an insect. Frontiers in Computational Neuroscience. 2015;9: 107.
Harischandra, N., Krause, A. F., & Dürr, V. (2015). Stable phase-shift despite quasi-rhythmic movements: a CPG-driven dynamic model of active tactile exploration in an insect. Frontiers in Computational Neuroscience, 9, 107. https://doi.org/10.3389/fncom.2015.00107
Harischandra, Nalin, Krause, André Frank, and Dürr, Volker. 2015. “Stable phase-shift despite quasi-rhythmic movements: a CPG-driven dynamic model of active tactile exploration in an insect”. Frontiers in Computational Neuroscience 9: 107.
Harischandra, N., Krause, A. F., and Dürr, V. (2015). Stable phase-shift despite quasi-rhythmic movements: a CPG-driven dynamic model of active tactile exploration in an insect. Frontiers in Computational Neuroscience 9:107.
Harischandra, N., Krause, A.F., & Dürr, V., 2015. Stable phase-shift despite quasi-rhythmic movements: a CPG-driven dynamic model of active tactile exploration in an insect. Frontiers in Computational Neuroscience, 9: 107.
N. Harischandra, A.F. Krause, and V. Dürr, “Stable phase-shift despite quasi-rhythmic movements: a CPG-driven dynamic model of active tactile exploration in an insect”, Frontiers in Computational Neuroscience, vol. 9, 2015, : 107.
Harischandra, N., Krause, A.F., Dürr, V.: Stable phase-shift despite quasi-rhythmic movements: a CPG-driven dynamic model of active tactile exploration in an insect. Frontiers in Computational Neuroscience. 9, : 107 (2015).
Harischandra, Nalin, Krause, André Frank, and Dürr, Volker. “Stable phase-shift despite quasi-rhythmic movements: a CPG-driven dynamic model of active tactile exploration in an insect”. Frontiers in Computational Neuroscience 9 (2015): 107.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-25T06:37:30Z
MD5 Prüfsumme
102df2ab848bf82e4753520deee4052f


Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

65 References

Daten bereitgestellt von Europe PubMed Central.

Object localization with whiskers.
Ahissar E, Knutsen PM., Biol Cybern 98(6), 2008
PMID: 18491159
Strategy change in vibrissal active sensing during rat locomotion.
Arkley K, Grant RA, Mitchinson B, Prescott TJ., Curr. Biol. 24(13), 2014
PMID: 24954047
Collision avoidance by running insects: antennal guidance in cockroaches.
Baba Y, Tsukada A, Comer CM., J. Exp. Biol. 213(Pt 13), 2010
PMID: 20543128
Motoneuronal control of antennal muscles in Locusta migratoria
Bauer C., Gewecke M.., 1991
Dynamical approaches to cognitive science.
Beer RD., Trends Cogn. Sci. (Regul. Ed.) 4(3), 2000
PMID: 10689343
Decoding the mechanisms of gait generation in salamanders by combining neurobiology, modeling and robotics.
Bicanski A, Ryczko D, Knuesel J, Harischandra N, Charrier V, Ekeberg O, Cabelguen JM, Ijspeert AJ., Biol Cybern 107(5), 2013
PMID: 23430277
Hill-type muscle model parameters determined from experiments on single muscles show large animal-to-animal variation.
Blumel M, Guschlbauer C, Daun-Gruhn S, Hooper SL, Buschges A., Biol Cybern 106(10), 2012
PMID: 23132430
Organizing network action for locomotion: insights from studying insect walking.
Buschges A, Akay T, Gabriel JP, Schmidt J., Brain Res Rev 57(1), 2007
PMID: 17888515
Modelling of intersegmental coordination in the lamprey central pattern generator for locomotion.
Cohen AH, Ermentrout GB, Kiemel T, Kopell N, Sigvardt KA, Williams TL., Trends Neurosci. 15(11), 1992
PMID: 1281350
The whisking rhythm generator: a novel mammalian network for the generation of movement.
Cramer NP, Li Y, Keller A., J. Neurophysiol. 97(3), 2007
PMID: 17202239
Stick Insect antennae
Dürr V.., 2014
Neuroethological concepts and their transfer to walking machines
Dürr V., Krause A., Schmitz J., Cruse H.., 2003
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Dynamic simulation of insect walking.
Ekeberg O, Blumel M, Buschges A., Arthropod structure & development. 33(3), 2004
PMID: IND43653726
Neural circuits for peristaltic wave propagation in crawling Drosophila larvae: analysis and modeling.
Gjorgjieva J, Berni J, Evers JF, Eglen SJ., Front Comput Neurosci 7(), 2013
PMID: 23576980
How detailed is the central pattern generation for locomotion?
Grillner S, Zangger P., Brain Res. 88(2), 1975
PMID: 1148835
Predictions of self-induced mechanoreceptive sensor readings in an insect-inspired active tactile sensing system
Harischandra N., Dürr V.., 2013
Characterization of obstacle negotiation behaviors in the cockroach, Blaberus discoidalis.
Harley CM, English BA, Ritzmann RE., J. Exp. Biol. 212(Pt 10), 2009
PMID: 19411540
Insect-inspired tactile contour sampling using vibration-based robotic antennae
Hoinville T., Harischandra N., Krause A., Dürr V.., 2014
Simulation of human walking with powered orthosis for designing practical assistive device.
Uchiyama Y, Nagai C, Obinata G., Conf Proc IEEE Eng Med Biol Soc 2012(), 2012
PMID: 23367005
Simple cellular and network control principles govern complex patterns of motor behavior.
Kozlov A, Huss M, Lansner A, Kotaleski JH, Grillner S., Proc. Natl. Acad. Sci. U.S.A. 106(47), 2009
PMID: 19901329
Direct control of an active tactile sensor using echo state networks
Krause A., Bläsing B., Dürr V., Schack T.., 2009
Tactile efficiency of insect antennae with two hinge joints.
Krause AF, Durr V., Biol Cybern 91(3), 2004
PMID: 15378371
Active tactile sampling by an insect in a step-climbing paradigm.
Krause AF, Durr V., Front Behav Neurosci 6(), 2012
PMID: 22754513
Contour-net: a model for tactile contour-tracing and shape-recognition
Krause A., Hoinville T., Harischandra N., Dürr V.., 2014
Central drive and proprioceptive control of antennal movements in the walking stick insect.
Krause AF, Winkler A, Durr V., J. Physiol. Paris 107(1-2), 2012
PMID: 22728470
The neural mechanisms of antennal positioning in flying moths.
Krishnan A, Prabhakar S, Sudarsan S, Sane SP., J. Exp. Biol. 215(Pt 17), 2012
PMID: 22660776
Insect-like antennal sensing for climbing and tunneling behavior in a biologically-inspired mobile robot
Lewinger W., Harley C., Ritzmann R., Branicky M., Quinn R.., 2005
Central pattern generators and the control of rhythmic movements.
Marder E, Bucher D., Curr. Biol. 11(23), 2001
PMID: 11728329
Slanted joint axes of the stick insect antenna: an adaptation to tactile acuity.
Mujagic S, Krause AF, Durr V., Naturwissenschaften 94(4), 2006
PMID: 17180615
Fifty Years of CPGs: Two Neuroethological Papers that Shaped the Course of Neuroscience.
Mulloney B, Smarandache C., Front Behav Neurosci 4(), 2010
PMID: 20700502
Sensory acquisition in active sensing systems.
Nelson ME, MacIver MA., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 192(6), 2006
PMID: 16645885
Antennal motor activity induced by pilocarpine in the American cockroach.
Okada J, Morimoto Y, Toh Y., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 195(4), 2009
PMID: 19184040
Spatio-temporal patterns of antennal movements in the searching cockroach.
Okada J, Toh Y., J. Exp. Biol. 207(Pt 21), 2004
PMID: 15371477
An insect-inspired bionic sensor for tactile localization and material classification with state-dependent modulation.
Patane L, Hellbach S, Krause AF, Arena P, Durr V., Front Neurorobot 6(), 2012
PMID: 23055967
Central programming and reflex control of walking in the cockroach
Pearson K.., 1972
Biomimetic vibrissal sensing for robots.
Pearson MJ, Mitchinson B, Sullivan JC, Pipe AG, Prescott TJ., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1581), 2011
PMID: 21969690
Active touch sensing.
Prescott TJ, Diamond ME, Wing AM., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1581), 2011
PMID: 21969680
Whisking with robots from rat vibrissae to biomimetic technology for active touch
Prescott T., Pearson M., Mitchinson B., Sullivan J., Pipe A.., 2009
Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion.
Rybak IA, Shevtsova NA, Lafreniere-Roula M, McCrea DA., J. Physiol. (Lond.) 577(Pt 2), 2006
PMID: 17008376
Antennal reflexes in the desert locust Schistocerca gregaria
Saager F., Gewecke M.., 1989
Properties of the feedback system controlling the coxa-trochanter joint in the stick insect Carausius morosus
Schmitz J.., 1986
Active tactile exploration for adaptive locomotion in the stick insect.
Schutz C, Durr V., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1581), 2011
PMID: 21969681
Invertebrate central pattern generator circuits.
Selverston AI., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 365(1551), 2010
PMID: 20603355
Antennal movements and mechanoreception: neurobiology of active tactile sensors
Staudacher E., Gebhardt M., Dürr V.., 2005
Reinforcement active learning in the vibrissae system: optimal object localization.
Gordon G, Dorfman N, Ahissar E., J. Physiol. Paris 107(1-2), 2012
PMID: 22789551
Comparative whole-body kinematics of closely related insect species with different body morphology.
Theunissen LM, Bekemeier HH, Durr V., J. Exp. Biol. 218(Pt 3), 2014
PMID: 25524984
Laufen und stehen der stabheuschrecke Carausius morosus: sinnesborstenfelder in den beingelenken als glieder von regelkreisen
Wendler G.., 1964
Co-contraction and passive forces facilitate load compensation of aimed limb movements.
Zakotnik J, Matheson T, Durr V., J. Neurosci. 26(19), 2006
PMID: 16687491
Whisking and whisker kinematics during a texture classification task.
Zuo Y, Perkon I, Diamond ME., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1581), 2011
PMID: 21969687
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 26347644
PubMed | Europe PMC

Suchen in

Google Scholar