Orthology Detection Combining Clustering and Synteny for Very Large Datasets

Lechner M, Hernandez-Rosales M, Dörr D, Wieseke N, Thévenin A, Stoye J, Hartmann RK, Prohaska SJ, Stadler PF (2014)
PLoS ONE 9(8): e105015.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor/in
; ; ; ; ; ; ; ;
Abstract / Bemerkung
The elucidation of orthology relationships is an important step both in gene function prediction as well as towards understanding patterns of sequence evolution. Orthology assignments are usually derived directly from sequence similarities for large data because more exact approaches exhibit too high computational costs. Here we present PoFF, an extension for the standalone tool Proteinortho, which enhances orthology detection by combining clustering, sequence similarity, and synteny. In the course of this work, FFAdj-MCS, a heuristic that assesses pairwise gene order using adjacencies (a similarity measure related to the breakpoint distance) was adapted to support multiple linear chromosomes and extended to detect duplicated regions. PoFF largely reduces the number of false positives and enables more fine-grained predictions than purely similarity-based approaches. The extension maintains the low memory requirements and the efficient concurrency options of its basis Proteinortho, making the software applicable to very large datasets.
Erscheinungsjahr
2014
Zeitschriftentitel
PLoS ONE
Band
9
Ausgabe
8
Seite(n)
e105015
ISSN
1932-6203
eISSN
1932-6203
Finanzierungs-Informationen
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
Page URI
https://pub.uni-bielefeld.de/record/2685362

Zitieren

Lechner M, Hernandez-Rosales M, Dörr D, et al. Orthology Detection Combining Clustering and Synteny for Very Large Datasets. PLoS ONE. 2014;9(8):e105015.
Lechner, M., Hernandez-Rosales, M., Dörr, D., Wieseke, N., Thévenin, A., Stoye, J., Hartmann, R. K., et al. (2014). Orthology Detection Combining Clustering and Synteny for Very Large Datasets. PLoS ONE, 9(8), e105015. doi:10.1371/journal.pone.0105015
Lechner, M., Hernandez-Rosales, M., Dörr, D., Wieseke, N., Thévenin, A., Stoye, J., Hartmann, R. K., Prohaska, S. J., and Stadler, P. F. (2014). Orthology Detection Combining Clustering and Synteny for Very Large Datasets. PLoS ONE 9, e105015.
Lechner, M., et al., 2014. Orthology Detection Combining Clustering and Synteny for Very Large Datasets. PLoS ONE, 9(8), p e105015.
M. Lechner, et al., “Orthology Detection Combining Clustering and Synteny for Very Large Datasets”, PLoS ONE, vol. 9, 2014, pp. e105015.
Lechner, M., Hernandez-Rosales, M., Dörr, D., Wieseke, N., Thévenin, A., Stoye, J., Hartmann, R.K., Prohaska, S.J., Stadler, P.F.: Orthology Detection Combining Clustering and Synteny for Very Large Datasets. PLoS ONE. 9, e105015 (2014).
Lechner, Marcus, Hernandez-Rosales, Maribel, Dörr, Daniel, Wieseke, Nicolas, Thévenin, Annelyse, Stoye, Jens, Hartmann, Roland K., Prohaska, Sonja J., and Stadler, Peter F. “Orthology Detection Combining Clustering and Synteny for Very Large Datasets”. PLoS ONE 9.8 (2014): e105015.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:24Z
MD5 Prüfsumme
39da8aee927a1d5a6b600cbf6d3b3baa

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 25137074
PubMed | Europe PMC

Suchen in

Google Scholar