Reconstruction of the lipid metabolism for the microalga Monoraphidium neglectum from its genome sequence reveals characteristics suitable for biofuel production

Bogen C, Al-Dilaimi A, Albersmeier A, Wichmann J, Grundmann M, Rupp O, Lauersen KJ, Blifernez-Klassen O, Kalinowski J, Goesmann A, Mussgnug JH, et al. (2013)
BMC Genomics 14(1): 926.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
BACKGROUND: Microalgae are gaining importance as sustainable production hosts in the fields of biotechnology and bioenergy. A robust biomass accumulating strainof the genus Monoraphidium (SAG 48.87) was investigated in this work as apotential feedstock for biofuel production. The genome was sequenced, annotated, and key enzymes for triacylglycerol formation were elucidated. RESULTS: Monoraphidium neglectum was identified as an oleaginous species with favourable growth characteristics as well as a high potential for crude oil production, based on neutral lipid contents of approximately 21% (dry weight) under nitrogen starvation, composed of predominantly C18:1 and C16:0 fatty acids. Further characterization revealed growth in a relatively wide pH range and salt concentrations of up to 1.0% NaCl, in which the cells exhibited larger structures. This first full genome sequencing of a member of the Selenastraceae revealed a diploid, approximately 68 Mbp genome with a G + C content of 64.7%. The circular chloroplast genome was assembled to a 135,362 bp single contig, containing 67 protein-coding genes. The assembly of the mitochondrial genome resulted in two contigs with an approximate total size of 94 kb, the largest known mitochondrial genome within algae. 16,761 protein-coding genes were assigned to the nuclear genome. Comparison of gene sets with respect to functional categories revealed a higher gene number assigned to the category "carbohydrate metabolic process" and in "fatty acid biosynthetic process" in M. neglectum when compared to Chlamydomonas reinhardtii and Nannochloropsis gaditana, indicating a higher metabolic diversity for applications in carbohydrate conversions of biotechnological relevance. CONCLUSIONS: The genome of M. neglectum, as well as the metabolic reconstruction of crucial lipid pathways, provides new insights into the diversity of the lipid metabolism in microalgae. The results of this work provide a platform to encourage the development of this strain for biotechnological applications and production concepts.
Erscheinungsjahr
2013
Zeitschriftentitel
BMC Genomics
Band
14
Ausgabe
1
Art.-Nr.
926
ISSN
1471-2164
Page URI
https://pub.uni-bielefeld.de/record/2645668

Zitieren

Bogen C, Al-Dilaimi A, Albersmeier A, et al. Reconstruction of the lipid metabolism for the microalga Monoraphidium neglectum from its genome sequence reveals characteristics suitable for biofuel production. BMC Genomics. 2013;14(1): 926.
Bogen, C., Al-Dilaimi, A., Albersmeier, A., Wichmann, J., Grundmann, M., Rupp, O., Lauersen, K. J., et al. (2013). Reconstruction of the lipid metabolism for the microalga Monoraphidium neglectum from its genome sequence reveals characteristics suitable for biofuel production. BMC Genomics, 14(1), 926. doi:10.1186/1471-2164-14-926
Bogen, Christian, Al-Dilaimi, Arwa, Albersmeier, Andreas, Wichmann, Julian, Grundmann, Michael, Rupp, Oliver, Lauersen, Kyle J., et al. 2013. “Reconstruction of the lipid metabolism for the microalga Monoraphidium neglectum from its genome sequence reveals characteristics suitable for biofuel production”. BMC Genomics 14 (1): 926.
Bogen, C., Al-Dilaimi, A., Albersmeier, A., Wichmann, J., Grundmann, M., Rupp, O., Lauersen, K. J., Blifernez-Klassen, O., Kalinowski, J., Goesmann, A., et al. (2013). Reconstruction of the lipid metabolism for the microalga Monoraphidium neglectum from its genome sequence reveals characteristics suitable for biofuel production. BMC Genomics 14:926.
Bogen, C., et al., 2013. Reconstruction of the lipid metabolism for the microalga Monoraphidium neglectum from its genome sequence reveals characteristics suitable for biofuel production. BMC Genomics, 14(1): 926.
C. Bogen, et al., “Reconstruction of the lipid metabolism for the microalga Monoraphidium neglectum from its genome sequence reveals characteristics suitable for biofuel production”, BMC Genomics, vol. 14, 2013, : 926.
Bogen, C., Al-Dilaimi, A., Albersmeier, A., Wichmann, J., Grundmann, M., Rupp, O., Lauersen, K.J., Blifernez-Klassen, O., Kalinowski, J., Goesmann, A., Mussgnug, J.H., Kruse, O.: Reconstruction of the lipid metabolism for the microalga Monoraphidium neglectum from its genome sequence reveals characteristics suitable for biofuel production. BMC Genomics. 14, : 926 (2013).
Bogen, Christian, Al-Dilaimi, Arwa, Albersmeier, Andreas, Wichmann, Julian, Grundmann, Michael, Rupp, Oliver, Lauersen, Kyle J., Blifernez-Klassen, Olga, Kalinowski, Jörn, Goesmann, Alexander, Mussgnug, Jan H., and Kruse, Olaf. “Reconstruction of the lipid metabolism for the microalga Monoraphidium neglectum from its genome sequence reveals characteristics suitable for biofuel production”. BMC Genomics 14.1 (2013): 926.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:20Z
MD5 Prüfsumme
1c4e60499aa7e5b651e5d72b766f8238


24 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Early Evolution of the Mitogen-Activated Protein Kinase Family in the Plant Kingdom.
Kalapos B, Hlavová M, Nádai TV, Galiba G, Bišová K, Dóczi R., Sci Rep 9(1), 2019
PMID: 30858468
Advances in metabolic modeling of oleaginous microalgae.
Tibocha-Bonilla JD, Zuñiga C, Godoy-Silva RD, Zengler K., Biotechnol Biofuels 11(), 2018
PMID: 30202436
Evaluation of the population dynamics of microalgae isolated from the state of Chiapas, Mexico with respect to the nutritional quality of water.
Sánchez Roque Y, Pérez-Luna YDC, Moreira Acosta J, Farrera Vázquez N, Berrones Hernández R, Saldaña Trinidad S, Pathiyamattom JS., Biodivers Data J (6), 2018
PMID: 30294208
Draft genome sequence and detailed characterization of biofuel production by oleaginous microalga Scenedesmus quadricauda LWG002611.
Nag Dasgupta C, Nayaka S, Toppo K, Singh AK, Deshpande U, Mohapatra A., Biotechnol Biofuels 11(), 2018
PMID: 30455737
Alga-PrAS (Algal Protein Annotation Suite): A Database of Comprehensive Annotation in Algal Proteomes.
Kurotani A, Yamada Y, Sakurai T., Plant Cell Physiol 58(1), 2017
PMID: 28069893
The Ectocarpus IMMEDIATE UPRIGHT gene encodes a member of a novel family of cysteine-rich proteins with an unusual distribution across the eukaryotes.
Macaisne N, Liu F, Scornet D, Peters AF, Lipinska A, Perrineau MM, Henry A, Strittmatter M, Coelho SM, Cock JM., Development 144(3), 2017
PMID: 28049657
Nuclear transformation and functional gene expression in the oleaginous microalga Monoraphidium neglectum.
Jaeger D, Hübner W, Huser T, Mussgnug JH, Kruse O., J Biotechnol 249(), 2017
PMID: 28302588
Proteomic approaches in microalgae: perspectives and applications.
Anand V, Singh PK, Banerjee C, Shukla P., 3 Biotech 7(3), 2017
PMID: 28667637
Highly efficient methane generation from untreated microalgae biomass.
Klassen V, Blifernez-Klassen O, Wibberg D, Winkler A, Kalinowski J, Posten C, Kruse O., Biotechnol Biofuels 10(), 2017
PMID: 28725266
A paneukaryotic genomic analysis of the small GTPase RABL2 underscores the significance of recurrent gene loss in eukaryote evolution.
Eliáš M, Klimeš V, Derelle R, Petrželková R, Tachezy J., Biol Direct 11(1), 2016
PMID: 26832778
Light Remodels Lipid Biosynthesis in Nannochloropsis gaditana by Modulating Carbon Partitioning between Organelles.
Alboresi A, Perin G, Vitulo N, Diretto G, Block M, Jouhet J, Meneghesso A, Valle G, Giuliano G, Maréchal E, Morosinotto T., Plant Physiol 171(4), 2016
PMID: 27325666
Label-free in vivo analysis of intracellular lipid droplets in the oleaginous microalga Monoraphidium neglectum by coherent Raman scattering microscopy.
Jaeger D, Pilger C, Hachmeister H, Oberländer E, Wördenweber R, Wichmann J, Mussgnug JH, Huser T, Kruse O., Sci Rep 6(), 2016
PMID: 27767024
Improving microalgae for biotechnology--From genetics to synthetic biology.
Hlavova M, Turoczy Z, Bisova K., Biotechnol Adv 33(6 pt 2), 2015
PMID: 25656099
The long goodbye: the rise and fall of flavodoxin during plant evolution.
Pierella Karlusich JJ, Lodeyro AF, Carrillo N., J Exp Bot 65(18), 2014
PMID: 25009172
Protein N-glycosylation in eukaryotic microalgae and its impact on the production of nuclear expressed biopharmaceuticals.
Mathieu-Rivet E, Kiefer-Meyer MC, Vanier G, Ovide C, Burel C, Lerouge P, Bardor M., Front Plant Sci 5(), 2014
PMID: 25183966
Potential of Monoraphidium minutum for carbon sequestration and lipid production in response to varying growth mode.
Patidar SK, Mitra M, George B, Soundarya R, Mishra S., Bioresour Technol 172(), 2014
PMID: 25233474
Green genes: bioinformatics and systems-biology innovations drive algal biotechnology.
Reijnders MJ, van Heck RG, Lam CM, Scaife MA, dos Santos VA, Smith AG, Schaap PJ., Trends Biotechnol 32(12), 2014
PMID: 25457388

74 References

Daten bereitgestellt von Europe PubMed Central.

Second generation biofuels: high-efficiency microalgae for biodiesel production
AUTHOR UNKNOWN, 2008
Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances.
Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A., Plant J. 54(4), 2008
PMID: 18476868
Biodiesel from microalgae.
Chisti Y., Biotechnol. Adv. 25(3), 2007
PMID: 17350212
Commercial applications of microalgae
AUTHOR UNKNOWN, 2006
Microalgae for biodiesel production and other applications: A review
AUTHOR UNKNOWN, 2010
Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779.
Vieler A, Wu G, Tsai CH, Bullard B, Cornish AJ, Harvey C, Reca IB, Thornburg C, Achawanantakun R, Buehl CJ, Campbell MS, Cavalier D, Childs KL, Clark TJ, Deshpande R, Erickson E, Armenia Ferguson A, Handee W, Kong Q, Li X, Liu B, Lundback S, Peng C, Roston RL, Sanjaya , Simpson JP, Terbush A, Warakanont J, Zauner S, Farre EM, Hegg EL, Jiang N, Kuo MH, Lu Y, Niyogi KK, Ohlrogge J, Osteryoung KW, Shachar-Hill Y, Sears BB, Sun Y, Takahashi H, Yandell M, Shiu SH, Benning C., PLoS Genet. 8(11), 2012
PMID: 23166516
The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism.
Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kroger N, Lau WW, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS., Science 306(5693), 2004
PMID: 15459382
The Chlamydomonas genome reveals the evolution of key animal and plant functions.
Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Riano-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martinez D, Ngau WC, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR., Science 318(5848), 2007
PMID: 17932292
Biodiesel production with microalgae as feedstock: from strains to biodiesel.
Gong Y, Jiang M., Biotechnol. Lett. 33(7), 2011
PMID: 21380528
Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii.
Li Y, Han D, Hu G, Sommerfeld M, Hu Q., Biotechnol. Bioeng. 107(2), 2010
PMID: 20506159
Lipid metabolism in microalgae distinguishes itself.
Liu B, Benning C., Curr. Opin. Biotechnol. 24(2), 2012
PMID: 22981869
The versatility of algae and their lipid metabolism.
Harwood JL, Guschina IA., Biochimie 91(6), 2008
PMID: 19063932
Isolation and evaluation of oil-producing microalgae from subtropical coastal and brackish waters.
Lim DK, Garg S, Timmins M, Zhang ES, Thomas-Hall SR, Schuhmann H, Li Y, Schenk PM., PLoS ONE 7(7), 2012
PMID: 22792403
Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor.
Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR., Biotechnol. Bioeng. 102(1), 2009
PMID: 18683258
Triacylglycerol profiling of microalgae strains for biofuel feedstock by liquid chromatography-high-resolution mass spectrometry.
MacDougall KM, McNichol J, McGinn PJ, O'Leary SJ, Melanson JE., Anal Bioanal Chem 401(8), 2011
PMID: 21915640
The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains.
Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH., Bioresour. Technol. 124(), 2012
PMID: 22995162
Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions
AUTHOR UNKNOWN, 2012
Identification of Monoraphidium contortum as a promising species for liquid biofuel production.
Bogen C, Klassen V, Wichmann J, La Russa M, Doebbe A, Grundmann M, Uronen P, Kruse O, Mussgnug JH., Bioresour. Technol. 133(), 2013
PMID: 23453981
Genomic insights from the oleaginous model alga Nannochloropsis gaditana.
Jinkerson RE, Radakovits R, Posewitz MC., Bioengineered 4(1), 2012
PMID: 22922732
Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana.
Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC., Nat Commun 3(), 2012
PMID: 22353717
Microalgae in the postgenomic era: a blooming reservoir for new natural products.
Sasso S, Pohnert G, Lohr M, Mittag M, Hertweck C., FEMS Microbiol. Rev. 36(4), 2011
PMID: 22091538
Culture of microalgal strains isolated from natural habitats in Thailand in various enriched media
AUTHOR UNKNOWN, 2012
Isolation of a novel strain of Monoraphidium sp. and characterization of its potential application as biodiesel feedstock
AUTHOR UNKNOWN, 2012
Traditional generic concepts versus 18S rRNA gene phylogeny in the green algal family Selenastraceae (Chlorophyceae, Chlorophyta)
AUTHOR UNKNOWN, 2001
Lipid productivity as a key characteristic for choosing algal species for biodiesel production
AUTHOR UNKNOWN, 2009
Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review.
Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS., Bioresour. Technol. 102(1), 2010
PMID: 20674344
The microalga Parachlorella kessleri--a novel highly efficient lipid producer.
Li X, Pribyl P, Bisova K, Kawano S, Cepak V, Zachleder V, Cizkova M, Branyikova I, Vitova M., Biotechnol. Bioeng. 110(1), 2012
PMID: 22766749
Establishment and interpretation of the genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB isolate 7/3/14.
Wibberg D, Jelonek L, Rupp O, Hennig M, Eikmeyer F, Goesmann A, Hartmann A, Borriss R, Grosch R, Puhler A, Schluter A., J. Biotechnol. 167(2), 2012
PMID: 23280342
OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes
AUTHOR UNKNOWN, 2007
Gene prediction with a hidden Markov model and a new intron submodel.
Stanke M, Waack S., Bioinformatics 19 Suppl 2(), 2003
PMID: 14534192
Eukaryotic gene prediction using GeneMark.hmm-E and GeneMark-ES
AUTHOR UNKNOWN, 2002
Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments.
Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, White O, Buell CR, Wortman JR., Genome Biol. 9(1), 2008
PMID: 18190707
GenDB--an open source genome annotation system for prokaryote genomes.
Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Puhler A., Nucleic Acids Res. 31(8), 2003
PMID: 12682369
Genomics and evolution of cellular organelles
AUTHOR UNKNOWN, 2005
Dinoflagellates: a mitochondrial genome all at sea.
Nash EA, Nisbet RE, Barbrook AC, Howe CJ., Trends Genet. 24(7), 2008
PMID: 18514360
EDGAR: a software framework for the comparative analysis of prokaryotic genomes.
Blom J, Albaum SP, Doppmeier D, Puhler A, Vorholter FJ, Zakrzewski M, Goesmann A., BMC Bioinformatics 10(), 2009
PMID: 19457249
Microalga Scenedesmus obliquus as a potential source for biodiesel production.
Mandal S, Mallick N., Appl. Microbiol. Biotechnol. 84(2), 2009
PMID: 19330327
InterPro in 2011: new developments in the family and domain prediction database.
Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, Bernard T, Binns D, Bork P, Burge S, de Castro E, Coggill P, Corbett M, Das U, Daugherty L, Duquenne L, Finn RD, Fraser M, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, McMenamin C, Mi H, Mutowo-Muellenet P, Mulder N, Natale D, Orengo C, Pesseat S, Punta M, Quinn AF, Rivoire C, Sangrador-Vegas A, Selengut JD, Sigrist CJ, Scheremetjew M, Tate J, Thimmajanarthanan M, Thomas PD, Wu CH, Yeats C, Yong SY., Nucleic Acids Res. 40(Database issue), 2011
PMID: 22096229
Molecular genetics of lipid metabolism in the model green alga Chlamydomonas reinhardtii
AUTHOR UNKNOWN, 2009
Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii.
La Russa M, Bogen C, Uhmeyer A, Doebbe A, Filippone E, Kruse O, Mussgnug JH., J. Biotechnol. 162(1), 2012
PMID: 22542934
Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas.
Boyle NR, Page MD, Liu B, Blaby IK, Casero D, Kropat J, Cokus SJ, Hong-Hermesdorf A, Shaw J, Karpowicz SJ, Gallaher SD, Johnson S, Benning C, Pellegrini M, Grossman A, Merchant SS., J. Biol. Chem. 287(19), 2012
PMID: 22403401
Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass.
Andrianov V, Borisjuk N, Pogrebnyak N, Brinker A, Dixon J, Spitsin S, Flynn J, Matyszczuk P, Andryszak K, Laurelli M, Golovkin M, Koprowski H., Plant Biotechnol. J. 8(3), 2009
PMID: 20051035
Metabolic and cellular organization in evolutionarily diverse microalgae as related to biofuels production.
Hildebrand M, Abbriano RM, Polle JE, Traller JC, Trentacoste EM, Smith SR, Davis AK., Curr Opin Chem Biol 17(3), 2013
PMID: 23538202
Physiological role of neutral lipid accumulation in eukaryotic microalgae under stresses
AUTHOR UNKNOWN, 2012
Continuous microalgae cultivation in a photobioreactor.
Tang H, Chen M, Ng KY, Salley SO., Biotechnol. Bioeng. 109(10), 2012
PMID: 22488253
Lipids of Ankistrodesmus braunii.
WILLIAMS VR, McMILLAN R., Science 133(3451), 1961
PMID: 13785526
Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress
AUTHOR UNKNOWN, 2013
Growth of oil accumulating microalga Neochloris oleoabundans under alkaline–saline conditions
AUTHOR UNKNOWN, 2012
Marine diatom, Navicula sp. strain JPCC DA0580 and marine green alga, Chlorella sp. strain NKG400014 as potential sources for biodiesel production.
Matsumoto M, Sugiyama H, Maeda Y, Sato R, Tanaka T, Matsunaga T., Appl. Biochem. Biotechnol. 161(1-8), 2009
PMID: 19756412
A review of the harvesting of micro-algae for biofuel production
AUTHOR UNKNOWN, 2013
The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex.
Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A, Lindquist E, Lucas S, Pangilinan J, Polle J, Salamov A, Terry A, Yamada T, Dunigan DD, Grigoriev IV, Claverie JM, Van Etten JL., Plant Cell 22(9), 2010
PMID: 20852019
Plastid origin and evolution: new models provide insights into old problems.
Chan CX, Gross J, Yoon HS, Bhattacharya D., Plant Physiol. 155(4), 2011
PMID: 21343425
Review. Methodologies for transferring DNA into eukaryotic microalgae
AUTHOR UNKNOWN, 2006
Characterization of a novel thioesterase (PtTE) from Phaeodactylum tricornutum.
Gong Y, Guo X, Wan X, Liang Z, Jiang M., J. Basic Microbiol. 51(6), 2011
PMID: 21656819
The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants.
Hockin NL, Mock T, Mulholland F, Kopriva S, Malin G., Plant Physiol. 158(1), 2011
PMID: 22065419
A simple method for the isolation and purification of total lipides from animal tissues.
FOLCH J, LEES M, SLOANE STANLEY GH., J. Biol. Chem. 226(1), 1957
PMID: 13428781
Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol.
Li Y, Han D, Hu G, Dauvillee D, Sommerfeld M, Ball S, Hu Q., Metab. Eng. 12(4), 2010
PMID: 20172043
Rapid isolation of high molecular weight plant DNA.
Murray MG, Thompson WF., Nucleic Acids Res. 8(19), 1980
PMID: 7433111
Viewing and Editing Assembled Sequences Using Consed
AUTHOR UNKNOWN, 2003
RNAmmer: consistent and rapid annotation of ribosomal RNA genes.
Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW., Nucleic Acids Res. 35(9), 2007
PMID: 17452365
The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs.
Schattner P, Brooks AN, Lowe TM., Nucleic Acids Res. 33(Web Server issue), 2005
PMID: 15980563
tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence
AUTHOR UNKNOWN, 1997
Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees
AUTHOR UNKNOWN, 1993
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S., Mol. Biol. Evol. 28(10), 2011
PMID: 21546353
Enzyme-specific profiles for genome annotation: PRIAM.
Claudel-Renard C, Chevalet C, Faraut T, Kahn D., Nucleic Acids Res. 31(22), 2003
PMID: 14602924
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24373495
PubMed | Europe PMC

Suchen in

Google Scholar