Walknet, a bio-inspired controller for hexapod walking

Schilling M, Hoinville T, Schmitz J, Cruse H (2013)
Biological Cybernetics 107(4): 397-419.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Abstract / Bemerkung
Walknet comprises an artificial neural network that allows for the simulation of a considerable amount of behavioral data obtained from walking and standing stick insects. It has been tested by kinematic and dynamic simulations as well as on a number of six-legged robots. Over the years, various different expansions of this network have been provided leading to different versions of Walknet. This review summarizes the most important biological findings described by Walknet and how they can be simulated. Walknet shows how a number of properties observed in insects may emerge from a decentralized architecture. Examples are the continuum of so-called "gaits," coordination of up to 18 leg joints during stance when walking forward or backward over uneven surfaces and negotiation of curves, dealing with leg loss, as well as being able following motion trajectories without explicit precalculation. The different Walknet versions are compared to other approaches describing insect-inspired hexapod walking. Finally, we briefly address the ability of this decentralized reactive controller to form the basis for the simulation of higher-level cognitive faculties exceeding the capabilities of insects.
Erscheinungsjahr
Zeitschriftentitel
Biological Cybernetics
Band
107
Zeitschriftennummer
4
Seite
397-419
ISSN
eISSN
PUB-ID

Zitieren

Schilling M, Hoinville T, Schmitz J, Cruse H. Walknet, a bio-inspired controller for hexapod walking. Biological Cybernetics. 2013;107(4):397-419.
Schilling, M., Hoinville, T., Schmitz, J., & Cruse, H. (2013). Walknet, a bio-inspired controller for hexapod walking. Biological Cybernetics, 107(4), 397-419. doi:10.1007/s00422-013-0563-5
Schilling, M., Hoinville, T., Schmitz, J., and Cruse, H. (2013). Walknet, a bio-inspired controller for hexapod walking. Biological Cybernetics 107, 397-419.
Schilling, M., et al., 2013. Walknet, a bio-inspired controller for hexapod walking. Biological Cybernetics, 107(4), p 397-419.
M. Schilling, et al., “Walknet, a bio-inspired controller for hexapod walking”, Biological Cybernetics, vol. 107, 2013, pp. 397-419.
Schilling, M., Hoinville, T., Schmitz, J., Cruse, H.: Walknet, a bio-inspired controller for hexapod walking. Biological Cybernetics. 107, 397-419 (2013).
Schilling, Malte, Hoinville, Thierry, Schmitz, Josef, and Cruse, Holk. “Walknet, a bio-inspired controller for hexapod walking”. Biological Cybernetics 107.4 (2013): 397-419.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2014-08-29T10:20:21Z

31 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Simple analytical model reveals the functional role of embodied sensorimotor interaction in hexapod gaits.
Ambe Y, Aoi S, Nachstedt T, Manoonpong P, Wörgötter F, Matsuno F., PLoS One 13(2), 2018
PMID: 29489831
The role of phase shifts of sensory inputs in walking revealed by means of phase reduction.
Yeldesbay A, Tóth T, Daun S., J Comput Neurosci 44(3), 2018
PMID: 29589252
A sensory-driven controller for quadruped locomotion.
Ferreira C, Santos CP., Biol Cybern 111(1), 2017
PMID: 28062927
ReaCog, a Minimal Cognitive Controller Based on Recruitment of Reactive Systems.
Schilling M, Cruse H., Front Neurorobot 11(), 2017
PMID: 28194106
Development and Training of a Neural Controller for Hind Leg Walking in a Dog Robot.
Hunt A, Szczecinski N, Quinn R., Front Neurorobot 11(), 2017
PMID: 28420977
A Minimal Model Describing Hexapedal Interlimb Coordination: The Tegotae-Based Approach.
Owaki D, Goda M, Miyazawa S, Ishiguro A., Front Neurorobot 11(), 2017
PMID: 28649197
A Force-Sensing System on Legs for Biomimetic Hexapod Robots Interacting with Unstructured Terrain.
Zhang H, Wu R, Li C, Zang X, Zhang X, Jin H, Zhao J., Sensors (Basel) 17(7), 2017
PMID: 28654003
Intra- and intersegmental influences among central pattern generating networks in the walking system of the stick insect.
Mantziaris C, Bockemühl T, Holmes P, Borgmann A, Daun S, Büschges A., J Neurophysiol 118(4), 2017
PMID: 28724783
Adaptive Control Strategies for Interlimb Coordination in Legged Robots: A Review.
Aoi S, Manoonpong P, Ambe Y, Matsuno F, Wörgötter F., Front Neurorobot 11(), 2017
PMID: 28878645
A load-based mechanism for inter-leg coordination in insects.
Dallmann CJ, Hoinville T, Dürr V, Schmitz J., Proc Biol Sci 284(1868), 2017
PMID: 29187626
Recovery of locomotion after injury in Drosophila melanogaster depends on proprioception.
Isakov A, Buchanan SM, Sullivan B, Ramachandran A, Chapman JK, Lu ES, Mahadevan L, de Bivort B., J Exp Biol 219(pt 11), 2016
PMID: 26994176
Avoid the hard problem: Employment of mental simulation for prediction is already a crucial step.
Schilling M, Cruse H., Proc Natl Acad Sci U S A 113(27), 2016
PMID: 27357663
Speed-dependent interplay between local pattern-generating activity and sensory signals during walking in Drosophila.
Berendes V, Zill SN, Büschges A, Bockemühl T., J Exp Biol 219(pt 23), 2016
PMID: 27688052
Prediction-for-CompAction: navigation in social environments using generalized cognitive maps.
Villacorta-Atienza JA, Calvo C, Makarov VA., Biol Cybern 109(3), 2015
PMID: 25677525
Walking and running in the desert ant Cataglyphis fortis.
Wahl V, Pfeffer SE, Wittlinger M., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 201(6), 2015
PMID: 25829304
Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot.
Grinke E, Tetzlaff C, Wörgötter F, Manoonpong P., Front Neurorobot 9(), 2015
PMID: 26528176
Novel plasticity rule can explain the development of sensorimotor intelligence.
Der R, Martius G., Proc Natl Acad Sci U S A 112(45), 2015
PMID: 26504200
A neuromechanical simulation of insect walking and transition to turning of the cockroach Blaberus discoidalis.
Szczecinski NS, Brown AE, Bender JA, Quinn RD, Ritzmann RE., Biol Cybern 108(1), 2014
PMID: 24178847
Biologically-inspired adaptive obstacle negotiation behavior of hexapod robots.
Goldschmidt D, Wörgötter F, Manoonpong P., Front Neurorobot 8(), 2014
PMID: 24523694
Mental representation and motor imagery training.
Schack T, Essig K, Frank C, Koester D., Front Hum Neurosci 8(), 2014
PMID: 24904368
A hexapod walker using a heterarchical architecture for action selection.
Schilling M, Paskarbeit J, Hoinville T, Hüffmeier A, Schneider A, Schmitz J, Cruse H., Front Comput Neurosci 7(), 2013
PMID: 24062682

169 References

Daten bereitgestellt von Europe PubMed Central.

Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system.
Akay T, Ludwar BCh, Goritz ML, Schmitz J, Buschges A., J. Neurosci. 27(12), 2007
PMID: 17376989

AUTHOR UNKNOWN, 0
An adaptive, self-organizing dynamical system for hierarchical control of bio-inspired locomotion.
Arena P, Fortuna L, Frasca M, Sicurella G., IEEE Trans Syst Man Cybern B Cybern 34(4), 2004
PMID: 15462448
Neuronal control of locomotion in the lobster, Homarus americanus. I. Motor programs for forward and backward walking
Ayers JL, Davis WJ., 1977
Reaction to disturbances of a walking leg during stance.
Bartling C, Schmitz J., J. Exp. Biol. 203(Pt 7), 2000
PMID: 10708641
Reversal of a reflex to a single motoneuron in the stick insect Carausius morosus
Bässler U., 1976

Bässler U., 1983
Pattern generation for stick insect walking movements--multisensory control of a locomotor program.
Bassler U, Buschges A., Brain Res. Brain Res. Rev. 27(1), 1998
PMID: 9639677
Interruption of searching movements of partly restrained front legs of stick insects, a model situation for the start of a stance phase?
Bässler U, Rohrbacher J, Karg G, Breutel G., 1991
Motor output oscillations in denervated thoracic ganglia of walking stick insects
Bässler U, Dürner C, Fahrig T., 1987
Evolving dynamical neural networks for adaptive behavior
Beer RD, Gallagher JC., 1992

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Kinematic and behavioral evidence for a distinction between trotting and ambling gaits in the cockroach Blaberus discoidalis.
Bender JA, Simpson EM, Tietz BR, Daltorio KA, Quinn RD, Ritzmann RE., J. Exp. Biol. 214(Pt 12), 2011
PMID: 21613522
Crossing large gaps: a simulation study of stick insect behaviour
Bläsing B., 2006
Stick insect locomotion in a complex environment: climbing over large gaps.
Blaesing B, Cruse H., J. Exp. Biol. 207(Pt 8), 2004
PMID: 15010478
Mechanisms of stick insect locomotion in a gap-crossing paradigm.
Blasing B, Cruse H., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 190(3), 2004
PMID: 14735308
Der Rhythmus der Schreitbewegungen der Stabheuschrecke Dixippus
Buddenbrock Wv., 1921
Identified nonspiking interneurons in leg reflexes and during walking in the stick insect
Büschges A, Kittmann R, Schmitz J., 1994
Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine
BÜSchges A, Schmitz J, BÄSsler U., J. Exp. Biol. 198(Pt 2), 1995
PMID: 9318078

Burkamp T., 1996
Interlimb coordinating factors during driven walking in crustacea
Chasserat C, Clarac F., 1980
Comparison of forces developed by the leg of the rock lobster when walking free or on a treadmill
Clarac F, Cruse H., 1982
On the function of the legs in the free walking stick insect Carausius morosus
Cruse H., 1976
The control of the body position in the stick insect (Carausius morosus), when walking over uneven surfaces
Cruse H., 1976
A new model describing the coordination pattern of the leg of a walking stick insect
Cruse H., 1979
A quantitative model of walking incorporating central and peripheral influences. I. The control of the individual leg
Cruse H., 1980
A quantitative model of walking incorporating central and peripheral influences. II. The connections between the different legs
Cruse H., 1980
The influence of load and leg amputation upon coordination in walking crustaceans: a model calculation
Cruse H., 1983
Coactivating influences between neighbouring legs in walking insects
Cruse H., 1985
Which parameters control the leg movement of a walking insect? I. Velocity control during the stance phase
Cruse H., 1985
Which parameters control the leg movement of a walking insect? II. The start of the swing phase
Cruse H., 1985
What mechanisms coordinate leg movement in walking arthropods?
Cruse H., Trends Neurosci. 13(1), 1990
PMID: 1688670
The functional sense of central oscillations in walking.
Cruse H., Biol Cybern 86(4), 2002
PMID: 11956808

AUTHOR UNKNOWN, 0
Movement of joint angles in the legs of a walking insect, Carausius morosus
Cruse H, Bartling C., 1995
A modular artificial neural net for controlling a six-legged walking system.
Cruse H, Bartling C, Cymbalyuk G, Dean J, Dreifert M., Biol Cybern 72(5), 1995
PMID: 7734551

AUTHOR UNKNOWN, 0
Walking—a complex behavior controlled by simple networks
Cruse H, Brunn D, Bartling Ch, Dean J, Dreifert M, Kindermann T, Schmitz J., 1995
Tight turns in stick insects.
Cruse H, Ehmanns I, Stubner S, Schmitz J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 195(3), 2009
PMID: 19137316

AUTHOR UNKNOWN, 0
Walknet-a biologically inspired network to control six-legged walking.
Cruse H, Kindermann T, Schumm M, Dean J, Schmitz J., Neural Netw 11(7-8), 1998
PMID: 12662760
Coupling mechanisms between the contralateral legs of a walking insect (Carausius morosus)
Cruse H, Knauth A., 1989
Adaptive control for insect leg position: controller properties depend on substrate compliance.
Cruse H, Kuhn S, Park S, Schmitz J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 190(12), 2004
PMID: 15378330
Two coupling mechanisms which determine the coordination of ipsilateral legs in the walking crayfish
Cruse H, Müller U., 1986

AUTHOR UNKNOWN, 0
Control of body position of a stick insect standing on uneven surfaces
Cruse H, Riemenschneider D, Stammer W., 1989
Oscillations of force in the standing legs of a walking insect (Carausius morosus)
Cruse H, Saxler G., 1980
The control system of the femur tibia joint in the standing leg of a walking stick insect Carausius morosus
Cruse H, Schmitz J., 1983
Control of body height in a stick insect walking on a treadwheel
Cruse H, Schmitz J, Braun U, Schweins A., 1993
Mechanisms of coupling between the ipsilateral legs of a walking insect (Carausius morosus)
Cruse H, Schwarze W., 1988
Curve walking in crayfish
Cruse H, Saavedra M., J. Exp. Biol. 199(Pt 7), 1996
PMID: 9319377

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
No need for a cognitive map: decentralized memory for insect navigation.
Cruse H, Wehner R., PLoS Comput. Biol. 7(3), 2011
PMID: 21445233

AUTHOR UNKNOWN, 0
Dominance of local sensory signals over inter-segmental effects in a motor system: modeling studies
Daun-Gruhn S, Tóth TI, Borgmann A., 2012
Control of leg protraction in the stick insect: a targeted movement showing compensation for externally applied forces
Dean J., 1984
Coding proprioceptive information to control movement to a target: simulation with a simple neural network
Dean J., 1990
A model of leg coordination in the stick insect, Carausius morosus. I. A geometrical consideration of contralateral and ipsilateral coordination mechanisms between two adjacent legs
Dean J., 1991
A model of leg coordination in the stick insect, Carausius morosus. II. Description of the kinematic model and simulation of normal step patterns
Dean J., 1991
A model of leg coordination in the stick insect, Carausius morosus. III. Responses to perturbations of normal coordination
Dean J., 1992
A model of leg coordination in the stick insect, Carausius morosus. IV. Comparisons of different forms of coordinating mechanismus
Dean J., 1992
Stick insects walking on a wheel: perturbations induced by obstruction of leg protraction
Dean J, Wendler G., 1982
Stick insect locomotion on a walking wheel: interleg coordination of leg position
Dean J, Wendler G., 1983
Modulation of oligosynaptic cutaneous and muscle afferent reflex pathways during fictive locomotion and scratching in the cat.
Degtyarenko AM, Simon ES, Norden-Krichmar T, Burke RE., J. Neurophysiol. 79(1), 1998
PMID: 9425213
Stick insects walking along inclined surfaces.
Diederich B, Schumm M, Cruse H., Integr. Comp. Biol. 42(1), 2002
PMID: 21708706
Behaviour-based modelling of hexapod locomotion: linking biology and technical application.
Durr V, Schmitz J, Cruse H., Arthropod structure & development. 33(3), 2004
PMID: IND43653723

AUTHOR UNKNOWN, 0
Dynamic simulation of insect walking.
Ekeberg O, Blumel M, Buschges A., Arthropod structure & development. 33(3), 2004
PMID: IND43653726
Leg coordination mechanisms in the stick insect applied to hexapod robot locomotion
Espenschied KS, Quinn RD, Chiel HJ, Beer RD., 1993
A comparison of three insect.-inspired locomotion controllers
Ferrell C., 1995

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
A qualitative dynamical analysis of evolved locomotion controllers
Gallagher JC, Beer RD., 1993
Quadrupedal gaits in hexapod animals - inter-leg coordination in free-walking adult stick insects.
Grabowska M, Godlewska E, Schmidt J, Daun-Gruhn S., J. Exp. Biol. 215(Pt 24), 2012
PMID: 22972892
A behavioural analysis of the temporal organisation of walking movements in the 1st instar and adult stick insect
Graham D., 1972
The effect of amputation and leg restraint on the free walking coordination of the stick insect Carausius morosus
Graham D., 1977
Effects of circum oesophageal lesion on the behaviour of the stick insect Carausius. II. Changes in walking coordination
Graham D., 1979
Pattern and control of walking in insects
Graham D., 1985
Coordinated walking of stick insects on a mercury surface
Graham D, Cruse H., 1981
Behaviour and motor output for an insect walking on a slippery surface. II. Backward walking
Graham D, Epstein D., 1985
Straight walking and turning on a slippery surface.
Gruhn M, Zehl L, Buschges A., J. Exp. Biol. 212(Pt 2), 2009
PMID: 19112138
Funktionsschaltbilder als Hilfsmittel zur Darstellung theoretischer Konzepte in der Verhaltensbiologie
Hassenstein B., 1983

AUTHOR UNKNOWN, 0
Neural control of unloaded leg posture and of leg swing in stick insect, cockroach, and mouse differs from that in larger animals.
Hooper SL, Guschlbauer C, Blumel M, Rosenbaum P, Gruhn M, Akay T, Buschges A., J. Neurosci. 29(13), 2009
PMID: 19339606
The co-ordination of insect movements. I. The walking movements of insects
Hughes GM., 1952
Walking in Aretaon asperrimus.
Jeck T, Cruse H., J. Insect Physiol. 53(7), 2007
PMID: 17482205
Sensory influences on the coordination of two leg joints during searching movements of stick insects
Karg G, Breutel G, Bässler U., 1991
The cerebellum and VOR/OKR learning models.
Kawato M, Gomi H., Trends Neurosci. 15(11), 1992
PMID: 1281352
Behavior and adaptability of a six-legged walking system with highly distributed control
Kindermann T., 2002
A neuromechanical model for the neuronal basis of curve walking in the stick insect.
Knops S, Toth TI, Guschlbauer C, Gruhn M, Daun-Gruhn S., J. Neurophysiol. 109(3), 2012
PMID: 23136343
Controlling a system with redundant degrees of freedom: transition from standing to walking.
Jeremy L., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 195(5), 2009
PMID: 19229542
Controlling a system with redundant degrees of freedom. I. Torque distribution in still standing stick insects.
Levy J, Cruse H., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 194(8), 2008
PMID: 18642005
Controlling a system with redundant degrees of freedom: II. Solution of the force distribution problem without a body model.
Levy J, Cruse H., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 194(8), 2008
PMID: 18642004
A bottom-up mechanism for behavior selection in an artificial creature
Maes P., 1991
Load compensation in targeted limb movements of an insect.
Matheson T, Durr V., J. Exp. Biol. 206(Pt 18), 2003
PMID: 12909699

AUTHOR UNKNOWN, 0
The contralateral coordination of walking in the crayfish Astacus leptodactylus. II. Model calculations
Müller U, Cruse H., 1991
Kinematic model of stick insect as an example of a 6-legged walking system
Müller-Wilm U, Dean J, Cruse H, Weidemann HJ, Eltze J, Pfeiffer F., 1992
Analysis of a spatial orientation memory in Drosophila.
Neuser K, Triphan T, Mronz M, Poeck B, Strauss R., Nature 453(7199), 2008
PMID: 18509336

AUTHOR UNKNOWN, 0
Central programming and reflex control of walking in the cockroach
Pearson KG., 1972
Characteristics of leg movements and patterns of coordination in locusts walking on rough terrain
Pearson KG, Franklin R., 1984
Nervous mechanisms underlying intersegmental coordination of leg movements during walking in cockroach
Pearson KG, Iles JF., 1973
Six-legged technical walking considering biological principles
Pfeiffer F, Eltze J, Weidemann HJ., 1995

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Control of the leg joints in stick insects: differences in the reflex properties between the standing and the walking states
Schmitz J., 1985
The depressor trochanteris motoneurones and their role in the coxo-trochanteral feedback loop in the stick insect Carausius morosus
Schmitz J., 1986
Properties of the feedback system controlling the coxa-trochanter joint in the stick insect Carausius morosus
Schmitz J., 1986
Load compensatory reactions in the proximal leg joints of stick insects during standing and walking
Schmitz J., 1993
Adaptive properties of ”hard-wired” neuronal systems
Schmitz J, Bartling C, Brunn DE, Cruse H, Dean J, Kindermann T, Schumm M, Wagner H., 1995
Intracellular recordings from nonspiking interneurons in a semiintact, tethered walking insect.
Schmitz J, Buschges A, Kittmann R., J. Neurobiol. 22(9), 1991
PMID: 1724457

AUTHOR UNKNOWN, 0
The treading-on-tarsus reflex in stick insects: phase-dependence and modifications of the motor output during walking
Schmitz J, Hassfeld G., 1989
No need for a body model: positive velocity feedback for the control of an 18-DOF robot walker
Schmitz J, Schneider A, Schilling M, Cruse H., 2008

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Winching up heavy loads with a compliant arm: a new local joint controller.
Schneider A, Cruse H, Schmitz J., Biol Cybern 98(5), 2008
PMID: 18414891

AUTHOR UNKNOWN, 0
Control of swing movement: influences of differently shaped substrate.
Schumm M, Cruse H., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 192(10), 2006
PMID: 16830135
Self-organized adaptation of a simple neural circuit enables complex robot behaviour
Steingrube S, Timme M, Wörgötter F, Manoonpong P., 2010
The central complex and the genetic dissection of locomotor behaviour.
Strauss R., Curr. Opin. Neurobiol. 12(6), 2002
PMID: 12490252

AUTHOR UNKNOWN, 0
A neuromechanical model explaining forward and backward stepping in the stick insect.
Toth TI, Knops S, Daun-Gruhn S., J. Neurophysiol. 107(12), 2012
PMID: 22402652
Die relative Koordination als Phänomen und als Methode zentralnervöser Funktionsanalyse
von E., 1939
Über relative Koordination bei Arthropoden
von E., 1943
Neural control of a modular multi-legged walking machine: simulation and hardware
von A, Hild M, Siedel T, Patel V, Pasemann F., 2012
Reflex-oscillations in evolved single leg neurocontrollers for walking machines
von A, Pasemann F., 2007

AUTHOR UNKNOWN, 0
Laufen und Stehen der Stabheuschrecke: Sinnesborsten in den Beingelenken als Glieder von Regelkreisen
Wendler G., 1964

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Insect walking.
Wilson DM., Annu. Rev. Entomol. 11(), 1966
PMID: 5321575
Perspectives and problems in motor learning.
Wolpert DM, Ghahramani Z, Flanagan JR., Trends Cogn. Sci. (Regul. Ed.) 5(11), 2001
PMID: 11684481
Inter-leg coordination in the control of walking speed in Drosophila.
Wosnitza A, Bockemuhl T, Dubbert M, Scholz H, Buschges A., J. Exp. Biol. 216(Pt 3), 2012
PMID: 23038731

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 23824506
PubMed | Europe PMC

Suchen in

Google Scholar