Detailed analysis of metagenome datasets obtained from biogas-producing microbial communities residing in biogas reactors does not indicate the presence of putative pathogenic microorganisms

Eikmeyer FG, Rademacher A, Hanreich A, Hennig M, Jaenicke S, Maus I, Wibberg D, Zakrzewski M, Pühler A, Klocke M, Schlüter A (2013)
Biotechnology for Biofuels 6(1): 49.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
Background In recent years biogas plants in Germany have been supposed to be involved in amplification and dissemination of pathogenic bacteria causing severe infections in humans and animals. In particular, biogas plants are discussed to contribute to the spreading of Escherichia coli infections in humans or chronic botulism in cattle caused by Clostridium botulinum. Metagenome datasets of microbial communities from an agricultural biogas plant as well as from anaerobic lab-scale digesters operating at different temperatures and conditions were analyzed for the presence of putative pathogenic bacteria and virulence determinants by various bioinformatic approaches. Results All datasets featured a low abundance of reads that were taxonomically assigned to the genus Escherichia or further selected genera comprising pathogenic species. Higher numbers of reads were taxonomically assigned to the genus Clostridium. However, only very few sequences were predicted to originate from pathogenic clostridial species. Moreover, mapping of metagenome reads to complete genome sequences of selected pathogenic bacteria revealed that not the pathogenic species itself, but only species that are more or less related to pathogenic ones are present in the fermentation samples analyzed. Likewise, known virulence determinants could hardly be detected. Only a marginal number of reads showed similarity to sequences described in the Microbial Virulence Database MvirDB such as those encoding protein toxins, virulence proteins or antibiotic resistance determinants. Conclusions Findings of this first study of metagenomic sequence reads of biogas producing microbial communities suggest that the risk of dissemination of pathogenic bacteria by application of digestates from biogas fermentations as fertilizers is low, because obtained results do not indicate the presence of putative pathogenic microorganisms in the samples analyzed.
Erscheinungsjahr
2013
Zeitschriftentitel
Biotechnology for Biofuels
Band
6
Ausgabe
1
Art.-Nr.
49
ISSN
1754-6834
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2605193

Zitieren

Eikmeyer FG, Rademacher A, Hanreich A, et al. Detailed analysis of metagenome datasets obtained from biogas-producing microbial communities residing in biogas reactors does not indicate the presence of putative pathogenic microorganisms. Biotechnology for Biofuels. 2013;6(1): 49.
Eikmeyer, F. G., Rademacher, A., Hanreich, A., Hennig, M., Jaenicke, S., Maus, I., Wibberg, D., et al. (2013). Detailed analysis of metagenome datasets obtained from biogas-producing microbial communities residing in biogas reactors does not indicate the presence of putative pathogenic microorganisms. Biotechnology for Biofuels, 6(1), 49. doi:10.1186/1754-6834-6-49
Eikmeyer, Felix Gregor, Rademacher, Antje, Hanreich, Angelika, Hennig, Magdalena, Jaenicke, Sebastian, Maus, Irena, Wibberg, Daniel, et al. 2013. “Detailed analysis of metagenome datasets obtained from biogas-producing microbial communities residing in biogas reactors does not indicate the presence of putative pathogenic microorganisms”. Biotechnology for Biofuels 6 (1): 49.
Eikmeyer, F. G., Rademacher, A., Hanreich, A., Hennig, M., Jaenicke, S., Maus, I., Wibberg, D., Zakrzewski, M., Pühler, A., Klocke, M., et al. (2013). Detailed analysis of metagenome datasets obtained from biogas-producing microbial communities residing in biogas reactors does not indicate the presence of putative pathogenic microorganisms. Biotechnology for Biofuels 6:49.
Eikmeyer, F.G., et al., 2013. Detailed analysis of metagenome datasets obtained from biogas-producing microbial communities residing in biogas reactors does not indicate the presence of putative pathogenic microorganisms. Biotechnology for Biofuels, 6(1): 49.
F.G. Eikmeyer, et al., “Detailed analysis of metagenome datasets obtained from biogas-producing microbial communities residing in biogas reactors does not indicate the presence of putative pathogenic microorganisms”, Biotechnology for Biofuels, vol. 6, 2013, : 49.
Eikmeyer, F.G., Rademacher, A., Hanreich, A., Hennig, M., Jaenicke, S., Maus, I., Wibberg, D., Zakrzewski, M., Pühler, A., Klocke, M., Schlüter, A.: Detailed analysis of metagenome datasets obtained from biogas-producing microbial communities residing in biogas reactors does not indicate the presence of putative pathogenic microorganisms. Biotechnology for Biofuels. 6, : 49 (2013).
Eikmeyer, Felix Gregor, Rademacher, Antje, Hanreich, Angelika, Hennig, Magdalena, Jaenicke, Sebastian, Maus, Irena, Wibberg, Daniel, Zakrzewski, Martha, Pühler, Alfred, Klocke, Michael, and Schlüter, Andreas. “Detailed analysis of metagenome datasets obtained from biogas-producing microbial communities residing in biogas reactors does not indicate the presence of putative pathogenic microorganisms”. Biotechnology for Biofuels 6.1 (2013): 49.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:15Z
MD5 Prüfsumme
8ecd0dc17c5f733d63b3a8717ae58f79


14 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Targeted in situ metatranscriptomics for selected taxa from mesophilic and thermophilic biogas plants.
Stolze Y, Bremges A, Maus I, Pühler A, Sczyrba A, Schlüter A., Microb Biotechnol 11(4), 2018
PMID: 29205917
Spatial Distribution and Diverse Metabolic Functions of Lignocellulose-Degrading Uncultured Bacteria as Revealed by Genome-Centric Metagenomics.
Kougias PG, Campanaro S, Treu L, Tsapekos P, Armani A, Angelidaki I., Appl Environ Microbiol 84(18), 2018
PMID: 30006398
Isolation of lactic acid-forming bacteria from biogas plants.
Bohn J, Yüksel-Dadak A, Dröge S, König H., J Biotechnol 244(), 2017
PMID: 28011128
Genomics and prevalence of bacterial and archaeal isolates from biogas-producing microbiomes.
Maus I, Bremges A, Stolze Y, Hahnke S, Cibis KG, Koeck DE, Kim YS, Kreubel J, Hassa J, Wibberg D, Weimann A, Off S, Stantscheff R, Zverlov VV, Schwarz WH, König H, Liebl W, Scherer P, McHardy AC, Sczyrba A, Klocke M, Pühler A, Schlüter A., Biotechnol Biofuels 10(), 2017
PMID: 29158776
Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy.
Campanaro S, Treu L, Kougias PG, De Francisci D, Valle G, Angelidaki I., Biotechnol Biofuels 9(), 2016
PMID: 26839589
Identification and genome reconstruction of abundant distinct taxa in microbiomes from one thermophilic and three mesophilic production-scale biogas plants.
Stolze Y, Bremges A, Rumming M, Henke C, Maus I, Pühler A, Sczyrba A, Schlüter A., Biotechnol Biofuels 9(), 2016
PMID: 27462367
Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates.
Maus I, Koeck DE, Cibis KG, Hahnke S, Kim YS, Langer T, Kreubel J, Erhard M, Bremges A, Off S, Stolze Y, Jaenicke S, Goesmann A, Sczyrba A, Scherer P, König H, Schwarz WH, Zverlov VV, Zverlov VV, Liebl W, Pühler A, Schlüter A, Klocke M., Biotechnol Biofuels 9(), 2016
PMID: 27525040
Clostridium cluster I and their pathogenic members in a full-scale operating biogas plant.
Dohrmann AB, Walz M, Löwen A, Tebbe CC., Appl Microbiol Biotechnol 99(8), 2015
PMID: 25472441
Detection of Clostridium botulinum in liquid manure and biogas plant wastes.
Neuhaus J, Schrödl W, Shehata AA, Krüger M., Folia Microbiol (Praha) 60(5), 2015
PMID: 25753763
Fate of Clostridium botulinum and incidence of pathogenic clostridia in biogas processes.
Fröschle B, Messelhäusser U, Höller C, Lebuhn M., J Appl Microbiol 119(4), 2015
PMID: 26198084
Lambda: the local aligner for massive biological data.
Hauswedell H, Singer J, Reinert K., Bioinformatics 30(17), 2014
PMID: 25161219
Dynamics of antibiotic resistance genes and presence of putative pathogens during ambient temperature anaerobic digestion.
Resende JA, Diniz CG, Silva VL, Otenio MH, Bonnafous A, Arcuri PB, Godon JJ., J Appl Microbiol 117(6), 2014
PMID: 25250562

49 References

Daten bereitgestellt von Europe PubMed Central.

Future Challenges to Microbial Food Safety Contributions resulting from a conference held in Wolfheze, the Netherlands
AUTHOR UNKNOWN, 2010
Epidemiology of Pathogens in the Food Supply
AUTHOR UNKNOWN, 2011
Genome sequence analyses of two isolates from the recent Escherichia coli outbreak in Germany reveal the emergence of a new pathotype: Entero-Aggregative-Haemorrhagic Escherichia coli (EAHEC).
Brzuszkiewicz E, Thurmer A, Schuldes J, Leimbach A, Liesegang H, Meyer FD, Boelter J, Petersen H, Gottschalk G, Daniel R., Arch. Microbiol. 193(12), 2011
PMID: 21713444
Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology.
Mellmann A, Harmsen D, Cummings CA, Zentz EB, Leopold SR, Rico A, Prior K, Szczepanowski R, Ji Y, Zhang W, McLaughlin SF, Henkhaus JK, Leopold B, Bielaszewska M, Prager R, Brzoska PM, Moore RL, Guenther S, Rothberg JM, Karch H., PLoS ONE 6(7), 2011
PMID: 21799941
Timeliness of surveillance during outbreak of Shiga Toxin-producing Escherichia coli infection, Germany, 2011.
Altmann M, Spode A, Altmann D, Wadl M, Benzler J, Eckmanns T, Krause G, An der Heiden M., Emerging Infect. Dis. 17(10), 2011
PMID: 22000368
Manure as a Source of Zoonotic Pathogens
AUTHOR UNKNOWN, 2011
Prevalence of Clostridium botulinum types B, E and F in faecal samples from Swedish cattle.
Dahlenborg M, Borch E, Radstrom P., Int. J. Food Microbiol. 82(2), 2003
PMID: 12568750
Chronischer Botulismus. Tod aus der Biogasanlage
AUTHOR UNKNOWN, 2011
Chronic Clostridium botulinum infections in farmers.
Rodloff AC, Kruger M., Anaerobe 18(2), 2011
PMID: 22197952
Bacterial pathogenomics.
Pallen MJ, Wren BW., Nature 449(7164), 2007
PMID: 17943120
Genomic islands in pathogenic and environmental microorganisms.
Dobrindt U, Hochhut B, Hentschel U, Hacker J., Nat. Rev. Microbiol. 2(5), 2004
PMID: 15100694
MvirDB--a microbial database of protein toxins, virulence factors and antibiotic resistance genes for bio-defence applications.
Zhou CE, Smith J, Lam M, Zemla A, Dyer MD, Slezak T., Nucleic Acids Res. 35(Database issue), 2006
PMID: 17090593
ARDB--Antibiotic Resistance Genes Database.
Liu B, Pop M., Nucleic Acids Res. 37(Database issue), 2008
PMID: 18832362
Pathogenic bacteria and mineral N in soils following the land spreading of biogas digestates and fresh manure
Goberna M, Podmirseg SM, Waldhuber S, Knapp BA, Garcia C, Insam H., Agric., Ecosyst. Environ., Appl. Soil Ecol. 49(), 2011
PMID: IND44691951
Pathogen removal in farm-scale psychrophilic anaerobic digesters processing swine manure
AUTHOR UNKNOWN, 2011
Characterization of microbial biofilms in a thermophilic biogas system by high-throughput metagenome sequencing.
Rademacher A, Zakrzewski M, Schluter A, Schonberg M, Szczepanowski R, Goesmann A, Puhler A, Klocke M., FEMS Microbiol. Ecol. 79(3), 2011
PMID: 22126587
Metagenome and metaproteome analyses of microbial communities in mesophilic biogas producing anaerobic batch fermentations indicate concerted plant carbohydrate degradation
AUTHOR UNKNOWN, 2013
In situ electrochemical detection of embryonic stem cell differentiation.
Yea CH, An JH, Kim J, Choi JW., J. Biotechnol. 166(1-2), 2013
PMID: 23611890
Comparative and joint analysis of two metagenomic datasets from a biogas fermenter obtained by 454-pyrosequencing.
Jaenicke S, Ander C, Bekel T, Bisdorf R, Droge M, Gartemann KH, Junemann S, Kaiser O, Krause L, Tille F, Zakrzewski M, Puhler A, Schluter A, Goesmann A., PLoS ONE 6(1), 2011
PMID: 21297863
In situ electrochemical detection of embryonic stem cell differentiation.
Yea CH, An JH, Kim J, Choi JW., J. Biotechnol. 166(1-2), 2013
PMID: 23611890
Taxonomic classification of metagenomic shotgun sequences with CARMA3.
Gerlach W, Stoye J., Nucleic Acids Res. 39(14), 2011
PMID: 21586583
Clostridial toxins.
Popoff MR, Bouvet P., Future Microbiol 4(8), 2009
PMID: 19824793
Bacterial community structure in experimental methanogenic bioreactors and search for pathogenic clostridia as community members.
Dohrmann AB, Baumert S, Klingebiel L, Weiland P, Tebbe CC., Appl. Microbiol. Biotechnol. 89(6), 2010
PMID: 21042796
: a mixture of three clinically important species
AUTHOR UNKNOWN, 2005

AUTHOR UNKNOWN, 2010
Complete genome sequence of the African dairy isolate Streptococcus infantarius subsp. infantarius strain CJ18.
Jans C, Follador R, Lacroix C, Meile L, Stevens MJ., J. Bacteriol. 194(8), 2012
PMID: 22461547
In vitro reconstitution of the Clostridium botulinum type D progenitor toxin.
Kouguchi H, Watanabe T, Sagane Y, Sunagawa H, Ohyama T., J. Biol. Chem. 277(4), 2001
PMID: 11713244
Evidence for holin function of tcdE gene in the pathogenicity of Clostridium difficile.
Tan KS, Wee BY, Song KP., J. Med. Microbiol. 50(7), 2001
PMID: 11444771
Crystal structure and site-directed mutagenesis of enzymatic components from Clostridium perfringens iota-toxin.
Tsuge H, Nagahama M, Nishimura H, Hisatsune J, Sakaguchi Y, Itogawa Y, Katunuma N, Sakurai J., J. Mol. Biol. 325(3), 2003
PMID: 12498797
Subtilases: the superfamily of subtilisin-like serine proteases.
Siezen RJ, Leunissen JA., Protein Sci. 6(3), 1997
PMID: 9070434
A novel member of the subtilisin-like protease family from Bacillus subtilis
AUTHOR UNKNOWN, 1999
Proteolytic cleavage, reaction mechanism
AUTHOR UNKNOWN, 1999
RTX toxin structure and function: A story of numerous anomalies and few analogies in toxin biology
AUTHOR UNKNOWN, 2001
Structural basis of Clostridium perfringens toxin complex formation.
Adams JJ, Gregg K, Bayer EA, Boraston AB, Smith SP., Proc. Natl. Acad. Sci. U.S.A. 105(34), 2008
PMID: 18716000
Characterization of Bacteroides fragilis hemolysins and regulation and synergistic interactions of HlyA and HlyB.
Robertson KP, Smith CJ, Gough AM, Rocha ER., Infect. Immun. 74(4), 2006
PMID: 16552061
Transcriptional organization of the Escherichia coli hemolysin genes.
Welch RA, Pellett S., J. Bacteriol. 170(4), 1988
PMID: 2450867
Helicobacter pylori lipopolysaccharide is synthesized via a novel pathway with an evolutionary connection to protein N-glycosylation.
Hug I, Couturier MR, Rooker MM, Taylor DE, Stein M, Feldman MF., PLoS Pathog. 6(3), 2010
PMID: 20333251
Two families of chaperonin: physiology and mechanism.
Horwich AL, Fenton WA, Chapman E, Farr GW., Annu. Rev. Cell Dev. Biol. 23(), 2007
PMID: 17489689
Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria.
Frees D, Savijoki K, Varmanen P, Ingmer H., Mol. Microbiol. 63(5), 2007
PMID: 17302811
Multidrug resistance in bacteria.
Nikaido H., Annu. Rev. Biochem. 78(), 2009
PMID: 19231985
Knox, JR:
AUTHOR UNKNOWN, 2000
Basic local alignment search tool.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ., J. Mol. Biol. 215(3), 1990
PMID: 2231712
The Pfam protein families database.
Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD., Nucleic Acids Res. 40(Database issue), 2011
PMID: 22127870
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23557021
PubMed | Europe PMC

Suchen in

Google Scholar