A reconfigurable neuroprocessor for self-organizing feature maps

Lachmair J, Merényi E, Porrmann M, Rückert U (2013)
Neurocomputing 112(SI): 189-199.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
In this article we compare a scalable FPGA-based hardware accelerator for the emulation of Self-Organizing Feature Maps (SOMs) with a multi-threaded software implementation on a state-of-the-art multi-core microprocessor. After discussing the mapping of SOMs to the reconfigurable digital hardware implementation, we present how the modular system architecture can be flexibly adapted to various application datasets as well as to variants of SOMs like Conscience SOM. Hyperspectral image processing is used as a benchmark scenario for the comparison of our FPGA-based hardware accelerator and state-of-the-art multi-core microprocessors. The hardware costs, power consumption, and scalability of the FPGA based accelerator using Xilinx Virtex-4 FPGAs are discussed. For the real-world datasets used here, which require large SOMs, a speedup and energy reduction of one order of magnitude is achieved.
Stichworte
Hyperspectral data
Erscheinungsjahr
2013
Zeitschriftentitel
Neurocomputing
Band
112
Ausgabe
SI
Seite(n)
189-199
ISSN
0925-2312
Page URI
https://pub.uni-bielefeld.de/record/2575531

Zitieren

Lachmair J, Merényi E, Porrmann M, Rückert U. A reconfigurable neuroprocessor for self-organizing feature maps. Neurocomputing. 2013;112(SI):189-199.
Lachmair, J., Merényi, E., Porrmann, M., & Rückert, U. (2013). A reconfigurable neuroprocessor for self-organizing feature maps. Neurocomputing, 112(SI), 189-199. doi:10.1016/j.neucom.2012.11.045
Lachmair, Jan, Merényi, E., Porrmann, Mario, and Rückert, Ulrich. 2013. “A reconfigurable neuroprocessor for self-organizing feature maps”. Neurocomputing 112 (SI): 189-199.
Lachmair, J., Merényi, E., Porrmann, M., and Rückert, U. (2013). A reconfigurable neuroprocessor for self-organizing feature maps. Neurocomputing 112, 189-199.
Lachmair, J., et al., 2013. A reconfigurable neuroprocessor for self-organizing feature maps. Neurocomputing, 112(SI), p 189-199.
J. Lachmair, et al., “A reconfigurable neuroprocessor for self-organizing feature maps”, Neurocomputing, vol. 112, 2013, pp. 189-199.
Lachmair, J., Merényi, E., Porrmann, M., Rückert, U.: A reconfigurable neuroprocessor for self-organizing feature maps. Neurocomputing. 112, 189-199 (2013).
Lachmair, Jan, Merényi, E., Porrmann, Mario, and Rückert, Ulrich. “A reconfigurable neuroprocessor for self-organizing feature maps”. Neurocomputing 112.SI (2013): 189-199.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar