Flexible internal body models for motor control: On the convergence of constrained dual quaternion mean of multiple computation networks

Schilling M, Paskarbeit J, Schneider A, Cruse H (2012)
In: Proceedings of the International Joint Conference on Neural Networks 2012., doi: 10.1109/IJCNN.2012.6252846. .

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
While internal models are recruited in many tasks and can subserve in this way perception and cognition, it is important that they are grounded and embodied in sensorimotor representation. In this paper we analyze an internal model of the body and show how it can be used for motor control. We extend the Mean of Multiple Computation principle to a dual quaternion representation of transformation and show how this can be directly applied to the control of a simulated robot leg. The model is encoded as a recurrent neural network acting as an autoassociator that is able to solve any kinematic problem in an iterative fashion. We will analyze the convergence properties, especially when additional constraints (acting on the joint level) are introduced that restrict the attractor space.
Erscheinungsjahr
2012
Titel des Konferenzbandes
Proceedings of the International Joint Conference on Neural Networks 2012
Band
doi: 10.1109/IJCNN.2012.6252846
Konferenz
International Joint Conference on Neural Networks 2012
Konferenzort
Brisbane AUS
Page URI
https://pub.uni-bielefeld.de/record/2550051

Zitieren

Schilling M, Paskarbeit J, Schneider A, Cruse H. Flexible internal body models for motor control: On the convergence of constrained dual quaternion mean of multiple computation networks. In: Proceedings of the International Joint Conference on Neural Networks 2012. Vol doi: 10.1109/IJCNN.2012.6252846. 2012.
Schilling, M., Paskarbeit, J., Schneider, A., & Cruse, H. (2012). Flexible internal body models for motor control: On the convergence of constrained dual quaternion mean of multiple computation networks. Proceedings of the International Joint Conference on Neural Networks 2012, doi: 10.1109/IJCNN.2012.6252846. doi:10.1109/ijcnn.2012.6252846
Schilling, Malte, Paskarbeit, Jan, Schneider, Axel, and Cruse, Holk. 2012. “Flexible internal body models for motor control: On the convergence of constrained dual quaternion mean of multiple computation networks”. In Proceedings of the International Joint Conference on Neural Networks 2012. Vol. doi: 10.1109/IJCNN.2012.6252846.
Schilling, M., Paskarbeit, J., Schneider, A., and Cruse, H. (2012). “Flexible internal body models for motor control: On the convergence of constrained dual quaternion mean of multiple computation networks” in Proceedings of the International Joint Conference on Neural Networks 2012, vol. doi: 10.1109/IJCNN.2012.6252846,.
Schilling, M., et al., 2012. Flexible internal body models for motor control: On the convergence of constrained dual quaternion mean of multiple computation networks. In Proceedings of the International Joint Conference on Neural Networks 2012. no.doi: 10.1109/IJCNN.2012.6252846
M. Schilling, et al., “Flexible internal body models for motor control: On the convergence of constrained dual quaternion mean of multiple computation networks”, Proceedings of the International Joint Conference on Neural Networks 2012, vol. doi: 10.1109/IJCNN.2012.6252846, 2012.
Schilling, M., Paskarbeit, J., Schneider, A., Cruse, H.: Flexible internal body models for motor control: On the convergence of constrained dual quaternion mean of multiple computation networks. Proceedings of the International Joint Conference on Neural Networks 2012. doi: 10.1109/IJCNN.2012.6252846, (2012).
Schilling, Malte, Paskarbeit, Jan, Schneider, Axel, and Cruse, Holk. “Flexible internal body models for motor control: On the convergence of constrained dual quaternion mean of multiple computation networks”. Proceedings of the International Joint Conference on Neural Networks 2012. 2012.Vol. doi: 10.1109/IJCNN.2012.6252846.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar