An insect-inspired bionic sensor for tactile localization and material classification with state-dependent modulation

Patanè L, Hellbach S, Krause AF, Arena P, Dürr V (2012)
Frontiers in Neurorobotics 6: 1-18.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Abstract / Bemerkung
Insects carry a pair of antennae on their head: multimodal sensory organs that serve a wide range of sensory-guided behaviors. During locomotion, antennae are involved in near-range orientation, for example in detecting, localizing, probing, and negotiating obstacles. Here we present a bionic, active tactile sensing system inspired by insect antennae. It comprises an actuated elastic rod equipped with a terminal acceleration sensor. The measurement principle is based on the analysis of damped harmonic oscillations registered upon contact with an object.The dominant frequency of the oscillation is extracted to determine the distance of the contact point along the probe and basal angular encoders allow tactile localization in a polar coordinate system. Finally, the damping behavior of the registered signalis exploited to determine the most likely material. The tactile sensor is tested in four approaches with increasing neural plausibility: first, we show that peak extraction from the Fourier spectrum is sufficient for tactile localization with position errors below 1%. Also,the damping property of the extracted frequency isused for material classification. Second, we show that the Fourier spectrum can be analysed by an Artificial Neural Network (ANN) which can be trained to decode contact distance and to classify contact materials.Thirdly, we show how efficiency can be improved by band-pass filtering the Fourier spectrum by application of non-negative matrix factorization. This reduces the input dimension by 95% while reducing classification performance by 8% only. Finally, we replace the FFT by an array of spiking neurons with gradually differing resonance properties, such that their spike rate is a function of the input frequency. We show that this network can be applied to detect tactile contact events of a wheeled robot, and how detrimental effects of robot velocity on antennal dynamics can be suppressed by state-dependent modulation of the input signals.
Stichworte
forward model; spiking network; material classification; insect antenna; tactile sense; tactile localization; bionic sensor
Erscheinungsjahr
2012
Zeitschriftentitel
Frontiers in Neurorobotics
Band
6
Seite(n)
1-18
ISSN
1662-5218
eISSN
1662-5218
Page URI
https://pub.uni-bielefeld.de/record/2519479

Zitieren

Patanè L, Hellbach S, Krause AF, Arena P, Dürr V. An insect-inspired bionic sensor for tactile localization and material classification with state-dependent modulation. Frontiers in Neurorobotics. 2012;6:1-18.
Patanè, L., Hellbach, S., Krause, A. F., Arena, P., & Dürr, V. (2012). An insect-inspired bionic sensor for tactile localization and material classification with state-dependent modulation. Frontiers in Neurorobotics, 6, 1-18. doi:10.3389/fnbot.2012.00008
Patanè, Luca, Hellbach, Sven, Krause, André Frank, Arena, Paolo, and Dürr, Volker. 2012. “An insect-inspired bionic sensor for tactile localization and material classification with state-dependent modulation”. Frontiers in Neurorobotics 6: 1-18.
Patanè, L., Hellbach, S., Krause, A. F., Arena, P., and Dürr, V. (2012). An insect-inspired bionic sensor for tactile localization and material classification with state-dependent modulation. Frontiers in Neurorobotics 6, 1-18.
Patanè, L., et al., 2012. An insect-inspired bionic sensor for tactile localization and material classification with state-dependent modulation. Frontiers in Neurorobotics, 6, p 1-18.
L. Patanè, et al., “An insect-inspired bionic sensor for tactile localization and material classification with state-dependent modulation”, Frontiers in Neurorobotics, vol. 6, 2012, pp. 1-18.
Patanè, L., Hellbach, S., Krause, A.F., Arena, P., Dürr, V.: An insect-inspired bionic sensor for tactile localization and material classification with state-dependent modulation. Frontiers in Neurorobotics. 6, 1-18 (2012).
Patanè, Luca, Hellbach, Sven, Krause, André Frank, Arena, Paolo, and Dürr, Volker. “An insect-inspired bionic sensor for tactile localization and material classification with state-dependent modulation”. Frontiers in Neurorobotics 6 (2012): 1-18.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Unlocking neural complexity with a robotic key.
Stratton P, Hasselmo M, Milford M., J Physiol 594(22), 2016
PMID: 26844804
Active touch sensing: finger tips, whiskers, and antennae.
Grant RA, Itskov PM, Towal RB, Prescott TJ., Front Behav Neurosci 8(), 2014
PMID: 24600364

58 References

Daten bereitgestellt von Europe PubMed Central.

An insect brain computational model inspired by Drosophila melanogaster: architecture description
Arena P., Berg C., Patanè L., Strauss R., Termini P.., 2010
Reactive navigation through multiscroll systems: from theory to real-time implementation
Arena P., De S., Fortuna L., Frasca M., Patanè L., Vagliasindi G.., 2008
STDP-based behaviour learning on the tribot robot
Arena P., De S., Patanè L., Pollino M., Ventura C.., 2009
Integrating high-level sensor features via STDP for bio-inspired navigation
Arena P., Fortuna F., Frasca M., Patanè L., Sala C.., 2007
A bio-inspired auditory perception model for amplitude-frequency clustering
Arena P., Fortuna L., Frasca M., Ganci G., Patanè L.., 2005
A spiking network for object and ego-motion detection in roving robots
Arena P., Patanè L.., 2012
Channels in vision: basic aspects
Braddick O., Campbell F., Atkinson J.., 1978
A biologically inspired passive antenna for steering control of a running robot
Cowan N., Ma E., Cutkosky M., Full R.., 2003
Corollary discharge across the animal kingdom.
Crapse TB, Sommer MA., Nat. Rev. Neurosci. 9(8), 2008
PMID: 18641666
A tunable physical model of arthropod antennae
Demir A., Samson E., Cowan N.., 2010
'Where' and 'what' in the whisker sensorimotor system.
Diamond ME, von Heimendahl M, Knutsen PM, Kleinfeld D, Ahissar E., Nat. Rev. Neurosci. 9(8), 2008
PMID: 18641667
Bionic tactile sensor for near-range search, localisation and material classification
Dürr V., Krause A., Neitzel M., Lange O., Reimann B.., 2007
Insect-inspired estimation of egomotion.
Franz MO, Chahl JS, Krapp HG., Neural Comput 16(11), 2004
PMID: 15476600
Feel like an insect: a bio-inspired tactile sensor system
Hellbach S., Krause A., Dürr V.., 2010

Hellbach S., Otto M., Dürr V.., 2011
Resonate-and-fire neurons.
Izhikevich EM., Neural Netw 14(6-7), 2001
PMID: 11665779
Simple model of spiking neurons.
Izhikevich EM., IEEE Trans Neural Netw 14(6), 2003
PMID: 18244602
Bursts as a unit of neural information: selective communication via resonance.
Izhikevich EM, Desai NS, Walcott EC, Hoppensteadt FC., Trends Neurosci. 26(3), 2003
PMID: 12591219
Active antenna for contact sensing
Kaneko M., Kanayma N., Tsuji T.., 1998
Three creatures named 'forward model'.
Karniel A., Neural Netw 15(3), 2002
PMID: 12125886
Passive sensing and active sensing of a biomimetic whisker
Kim D., Möller R.., 2006
Dynamical wall-following for a wheeled robot using a passive tactile sensor
Lamperski A., Loh O., Kutscher B., Cowan N.., 2005
Vorrichtung und Verfahren zur Erfassung von Hindernissen
Lange O., Reimann B.., 2005
Insectoid obstacle detection based on an active tactile approach
Lange O., Reimann B., Saenz J., Dürr V., Elkmann N.., 2005
Learning the parts of objects by non-negative matrix factorization.
Lee DD, Seung HS., Nature 401(6755), 1999
PMID: 10548103
Templates and anchors for antenna-based wall following in cockroaches and robots
Lee J., Sponberg S., Loh O., Lamperski A., Full R., Cowan N.., 2008
Insect-like antennal sensing for climbing and tunneling behavior in a biologically-inspired mobile robot
Lewinger W., Harley C., Ritzmann R., Branicky M., Quinn R.., 2005
Efference copies in neural control of dynamic biped walking
Manoonpong P., Woergoetter F.., 2009
Forward models in visuomotor control.
Mehta B, Schaal S., J. Neurophysiol. 88(2), 2002
PMID: 12163543
Forward Models for Physiological Motor Control.
Wolpert DM, Miall RC., Neural Netw 9(8), 1996
PMID: 12662535
Active vibrissal sensing in rodents and marsupials.
Mitchinson B, Grant RA, Arkley K, Rankov V, Perkon I, Prescott TJ., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1581), 2011
PMID: 21969685
Sparse coding of sensory inputs.
Olshausen BA, Field DJ., Curr. Opin. Neurobiol. 14(4), 2004
PMID: 15321069
Biomimetic vibrissal sensing for robots.
Pearson MJ, Mitchinson B, Sullivan JC, Pipe AG, Prescott TJ., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1581), 2011
PMID: 21969690
Whiskerbot: a robotic active touch system modeled on the rat whisker sensory system
Pearson M., Pipe A., Melhuish C., Mitchinson B., Prescott T.., 2007
New insights into corollary discharges mediated by identified neural pathways.
Poulet JF, Hedwig B., Trends Neurosci. 30(1), 2006
PMID: 17137642
Active touch sensing.
Prescott TJ, Diamond ME, Wing AM., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1581), 2011
PMID: 21969680

Ritter H., Martinez T., Schulten K.., 1992
A cricket-inspired neural network for feedforward compensation and multisensory integration
Russo P., Webb B., Reeve R., Arena P., Patanè L.., 2005
Using efference copy and a forward internal model for adaptive biped walking
Schröder-Schetelig J., Manoonpong P., Wörgötter F.., 2010
Active tactile exploration for adaptive locomotion in the stick insect.
Schutz C, Durr V., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1581), 2011
PMID: 21969681
Human detection using partial least squares analysis
Schwartz W., Kembhavi A., Harwood D., Davis L.., 2009
Biomechanics: robotic whiskers used to sense features.
Solomon JH, Hartmann MJ., Nature 443(7111), 2006
PMID: 17024083
Antennal movements and mechanoreception: neurobiology of active tactile sensors
Staudacher E., Gebhardt M., Dürr V.., 2005
Gating of sensory responses of descending brain neurones during walking in crickets
StaudacherY E, k ., J. Exp. Biol. 201 (Pt 4)(), 1998
PMID: 9438831
Physiology of vibration-sensitive afferents in the femoral chordotonal organ of the stick insect
Stein W., Sauer A.., 1999
A tactile sensing method employing force/torque information through insensitive probes
Tsujimura T., Yabuta T.., 1992
Dynamic contact sensing by flexible beam
Ueno N., Svinin M., Kaneko M.., 1998
Persistent neural activity: experiments and theory.
Wang XJ., Cereb. Cortex 13(11), 2003
PMID: 14576204
Resonant neurons and bushcricket behaviour.
Webb B, Wessnitzer J, Bush S, Schul J, Buchli J, Ijspeert A., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 193(2), 2006
PMID: 17180702
Functional grouping of descending interneurons that mediate antennal mechanosensory information to motor networks
Westmark S., Dürr V.., 2009
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

PMID: 23055967
PubMed | Europe PMC

Suchen in

Google Scholar