Virulence Evolution of the Human Pathogen Neisseria meningitidis by Recombination in the Core and Accessory Genome

Joseph B, Schwarz RF, Linke B, Blom J, Becker A, Claus H, Goesmann A, Frosch M, Mueller T, Vogel U, Schoen C (2011)
PLoS ONE 6(4): e18441.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Joseph, Biju; Schwarz, Roland F.; Linke, BurkhardUniBi; Blom, JochenUniBi; Becker, Anke; Claus, Heike; Goesmann, AlexanderUniBi ; Frosch, Matthias; Mueller, Tobias; Vogel, Ulrich; Schoen, Christoph
Abstract / Bemerkung
Background: Neisseria meningitidis is a naturally transformable, facultative pathogen colonizing the human nasopharynx. Here, we analyze on a genome-wide level the impact of recombination on gene-complement diversity and virulence evolution in N. meningitidis. We combined comparative genome hybridization using microarrays (mCGH) and multilocus sequence typing (MLST) of 29 meningococcal isolates with computational comparison of a subset of seven meningococcal genome sequences. Principal Findings: We found that lateral gene transfer of minimal mobile elements as well as prophages are major forces shaping meningococcal population structure. Extensive gene content comparison revealed novel associations of virulence with genetic elements besides the recently discovered meningococcal disease associated (MDA) island. In particular, we identified an association of virulence with a recently described canonical genomic island termed IHT-E and a differential distribution of genes encoding RTX toxin-and two-partner secretion systems among hyperinvasive and non-hyperinvasive lineages. By computationally screening also the core genome for signs of recombination, we provided evidence that about 40% of the meningococcal core genes are affected by recombination primarily within metabolic genes as well as genes involved in DNA replication and repair. By comparison with the results of previous mCGH studies, our data indicated that genetic structuring as revealed by mCGH is stable over time and highly similar for isolates from different geographic origins. Conclusions: Recombination comprising lateral transfer of entire genes as well as homologous intragenic recombination has a profound impact on meningococcal population structure and genome composition. Our data support the hypothesis that meningococcal virulence is polygenic in nature and that differences in metabolism might contribute to virulence.
Page URI


Joseph B, Schwarz RF, Linke B, et al. Virulence Evolution of the Human Pathogen Neisseria meningitidis by Recombination in the Core and Accessory Genome. PLoS ONE. 2011;6(4): e18441.
Joseph, B., Schwarz, R. F., Linke, B., Blom, J., Becker, A., Claus, H., Goesmann, A., et al. (2011). Virulence Evolution of the Human Pathogen Neisseria meningitidis by Recombination in the Core and Accessory Genome. PLoS ONE, 6(4), e18441.
Joseph, Biju, Schwarz, Roland F., Linke, Burkhard, Blom, Jochen, Becker, Anke, Claus, Heike, Goesmann, Alexander, et al. 2011. “Virulence Evolution of the Human Pathogen Neisseria meningitidis by Recombination in the Core and Accessory Genome”. PLoS ONE 6 (4): e18441.
Joseph, B., Schwarz, R. F., Linke, B., Blom, J., Becker, A., Claus, H., Goesmann, A., Frosch, M., Mueller, T., Vogel, U., et al. (2011). Virulence Evolution of the Human Pathogen Neisseria meningitidis by Recombination in the Core and Accessory Genome. PLoS ONE 6:e18441.
Joseph, B., et al., 2011. Virulence Evolution of the Human Pathogen Neisseria meningitidis by Recombination in the Core and Accessory Genome. PLoS ONE, 6(4): e18441.
B. Joseph, et al., “Virulence Evolution of the Human Pathogen Neisseria meningitidis by Recombination in the Core and Accessory Genome”, PLoS ONE, vol. 6, 2011, : e18441.
Joseph, B., Schwarz, R.F., Linke, B., Blom, J., Becker, A., Claus, H., Goesmann, A., Frosch, M., Mueller, T., Vogel, U., Schoen, C.: Virulence Evolution of the Human Pathogen Neisseria meningitidis by Recombination in the Core and Accessory Genome. PLoS ONE. 6, : e18441 (2011).
Joseph, Biju, Schwarz, Roland F., Linke, Burkhard, Blom, Jochen, Becker, Anke, Claus, Heike, Goesmann, Alexander, Frosch, Matthias, Mueller, Tobias, Vogel, Ulrich, and Schoen, Christoph. “Virulence Evolution of the Human Pathogen Neisseria meningitidis by Recombination in the Core and Accessory Genome”. PLoS ONE 6.4 (2011): e18441.

44 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The CRISPR/Cas system in Neisseria meningitidis affects bacterial adhesion to human nasopharyngeal epithelial cells.
Heidrich N, Hagmann A, Bauriedl S, Vogel J, Schoen C., RNA Biol 16(4), 2019
PMID: 30059276
Quantitative trait locus mapping reveals complex genetic architecture of quantitative virulence in the wheat pathogen Zymoseptoria tritici.
Stewart EL, Croll D, Lendenmann MH, Sanchez-Vallet A, Hartmann FE, Palma-Guerrero J, Ma X, McDonald BA., Mol Plant Pathol 19(1), 2018
PMID: 27868326
Neisseria gonorrhoeae host adaptation and pathogenesis.
Quillin SJ, Seifert HS., Nat Rev Microbiol 16(4), 2018
PMID: 29430011
Acquisition of virulence genes by a carrier strain gave rise to the ongoing epidemics of meningococcal disease in West Africa.
Brynildsrud OB, Eldholm V, Bohlin J, Uadiale K, Obaro S, Caugant DA., Proc Natl Acad Sci U S A 115(21), 2018
PMID: 29735685
Meningococcal carriage in Dutch adolescents and young adults; a cross-sectional and longitudinal cohort study.
van Ravenhorst MB, Bijlsma MW, van Houten MA, Struben VMD, Anderson AS, Eiden J, Hao L, Jansen KU, Jones H, Kitchin N, Pedneault L, Sanders EAM, van der Ende A., Clin Microbiol Infect 23(8), 2017
PMID: 28192234
Molecular characterization of invasive capsule null Neisseria meningitidis in South Africa.
Ganesh K, Allam M, Wolter N, Bratcher HB, Harrison OB, Lucidarme J, Borrow R, de Gouveia L, Meiring S, Birkhead M, Maiden MC, von Gottberg A, du Plessis M., BMC Microbiol 17(1), 2017
PMID: 28222677
Transcriptomic buffering of cryptic genetic variation contributes to meningococcal virulence.
Ampattu BJ, Hagmann L, Liang C, Dittrich M, Schlüter A, Blom J, Krol E, Goesmann A, Becker A, Dandekar T, Müller T, Schoen C., BMC Genomics 18(1), 2017
PMID: 28388876
The invasive Neisseria meningitidis MenC CC103 from Brazil is characterized by an accessory gene repertoire.
Marin MA, Fonseca E, Encinas F, Freitas F, Camargo DA, Coimbra RS, de Filippis I, Vicente AC., Sci Rep 7(1), 2017
PMID: 28487566
An unwanted guest: Neisseria meningitidis - carriage, risk for invasive disease and the impact of vaccination with insight on Italy incidence.
Gianchecchi E, Piccini G, Torelli A, Rappuoli R, Montomoli E., Expert Rev Anti Infect Ther 15(7), 2017
PMID: 28524748
The primary transcriptome of Neisseria meningitidis and its interaction with the RNA chaperone Hfq.
Heidrich N, Bauriedl S, Barquist L, Li L, Schoen C, Vogel J., Nucleic Acids Res 45(10), 2017
PMID: 28334889
The CRISPR-Cas9 system in Neisseria spp.
Zhang Y., Pathog Dis 75(4), 2017
PMID: 28369433
Meningococcal Two-Partner Secretion Systems and Their Association with Outcome in Patients with Meningitis.
Piet JR, van Ulsen P, Ur Rahman S, Bovenkerk S, Bentley SD, van de Beek D, van der Ende A., Infect Immun 84(9), 2016
PMID: 27324486
Metabolic competition as a driver of bacterial population structure.
Watkins ER, Maiden MC, Gupta S., Future Microbiol 11(), 2016
PMID: 27660887
Genomic Analysis of the Evolution and Global Spread of Hyper-invasive Meningococcal Lineage 5.
Harrison OB, Bray JE, Maiden MC, Caugant DA., EBioMedicine 2(3), 2015
PMID: 25984558
How clonal are Neisseria species? The epidemic clonality model revisited.
Tibayrenc M, Ayala FJ., Proc Natl Acad Sci U S A 112(29), 2015
PMID: 26195766
How the Knowledge of Interactions between Meningococcus and the Human Immune System Has Been Used to Prepare Effective Neisseria meningitidis Vaccines.
Gasparini R, Panatto D, Bragazzi NL, Lai PL, Bechini A, Levi M, Durando P, Amicizia D., J Immunol Res 2015(), 2015
PMID: 26351643
Campylobacter ureolyticus: a portrait of the pathogen.
O'Donovan D, Corcoran GD, Lucey B, Sleator RD., Virulence 5(4), 2014
PMID: 24717836
Differential activation of acid sphingomyelinase and ceramide release determines invasiveness of Neisseria meningitidis into brain endothelial cells.
Simonis A, Hebling S, Gulbins E, Schneider-Schaulies S, Schubert-Unkmeir A., PLoS Pathog 10(6), 2014
PMID: 24945304
Genome comparison of three serovar 5 pathogenic strains of Haemophilus parasuis: insights into an evolving swine pathogen.
Bello-Ortí B, Aragon V, Pina-Pedrero S, Bensaid A., Microbiology 160(pt 9), 2014
PMID: 24951673
Metabolism and virulence in Neisseria meningitidis.
Schoen C, Kischkies L, Elias J, Ampattu BJ., Front Cell Infect Microbiol 4(), 2014
PMID: 25191646
Defining the estimated core genome of bacterial populations using a Bayesian decision model.
van Tonder AJ, Mistry S, Bray JE, Hill DM, Cody AJ, Farmer CL, Klugman KP, von Gottberg A, Bentley SD, Parkhill J, Jolley KA, Maiden MC, Brueggemann AB., PLoS Comput Biol 10(8), 2014
PMID: 25144616
Homologous recombination drives both sequence diversity and gene content variation in Neisseria meningitidis.
Kong Y, Ma JH, Warren K, Tsang RS, Low DE, Jamieson FB, Alexander DC, Hao W., Genome Biol Evol 5(9), 2013
PMID: 23902748
Controlling serogroup B invasive meningococcal disease: the Canadian perspective.
Bettinger JA, Deeks SL, Halperin SA, Tsang R, Scheifele DW., Expert Rev Vaccines 12(5), 2013
PMID: 23659299
Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis.
Zhang Y, Heidrich N, Ampattu BJ, Gunderson CW, Seifert HS, Schoen C, Vogel J, Sontheimer EJ., Mol Cell 50(4), 2013
PMID: 23706818
ODoSE: a webserver for genome-wide calculation of adaptive divergence in prokaryotes.
Vos M, te Beek TA, van Driel MA, Huynen MA, Eyre-Walker A, van Passel MW., PLoS One 8(5), 2013
PMID: 23671597
Constraints on genome dynamics revealed from gene distribution among the Ralstonia solanacearum species.
Lefeuvre P, Cellier G, Remenant B, Chiroleu F, Prior P., PLoS One 8(5), 2013
PMID: 23723974
Description of an unusual Neisseria meningitidis isolate containing and expressing Neisseria gonorrhoeae-Specific 16S rRNA gene sequences.
Walcher M, Skvoretz R, Montgomery-Fullerton M, Jonas V, Brentano S., J Clin Microbiol 51(10), 2013
PMID: 23863567
Novel configurations of type I and II CRISPR-Cas systems in Corynebacterium diphtheriae.
Sangal V, Fineran PC, Hoskisson PA., Microbiology 159(pt 10), 2013
PMID: 23904149
Novel configurations of type I and II CRISPR-Cas systems in Corynebacterium diphtheriae.
Sangal V, Fineran PC, Hoskisson PA., Microbiology 159(10), 2013
PMID: 28206911
Evolution of variation in presence and absence of genes in bacterial pathways.
Francis AR, Tanaka MM., BMC Evol Biol 12(), 2012
PMID: 22520826
Whole genome sequencing to investigate the emergence of clonal complex 23 Neisseria meningitidis serogroup Y disease in the United States.
Krauland MG, Dunning Hotopp JC, Riley DR, Daugherty SC, Marsh JW, Messonnier NE, Mayer LW, Tettelin H, Harrison LH., PLoS One 7(4), 2012
PMID: 22558202
Genome characterisation of the genus Francisella reveals insight into similar evolutionary paths in pathogens of mammals and fish.
Sjödin A, Svensson K, Ohrman C, Ahlinder J, Lindgren P, Duodu S, Johansson A, Colquhoun DJ, Larsson P, Forsman M., BMC Genomics 13(), 2012
PMID: 22727144
Evolutionary and genomic insights into meningococcal biology.
Bratcher HB, Bennett JS, Maiden MC., Future Microbiol 7(7), 2012
PMID: 22827308
Opc expression, LPS immunotype switch and pilin conversion contribute to serum resistance of unencapsulated meningococci.
Hubert K, Pawlik MC, Claus H, Jarva H, Meri S, Vogel U., PLoS One 7(9), 2012
PMID: 23028802

84 References

Daten bereitgestellt von Europe PubMed Central.

Genetic analysis of meningococci carried by children and young adults.
Claus H, Maiden MC, Wilson DJ, McCarthy ND, Jolley KA, Urwin R, Hessler F, Frosch M, Vogel U., J. Infect. Dis. 191(8), 2005
PMID: 15776372
Distribution of serogroups and genotypes among disease-associated and carried isolates of Neisseria meningitidis from the Czech Republic, Greece, and Norway.
Yazdankhah SP, Kriz P, Tzanakaki G, Kremastinou J, Kalmusova J, Musilek M, Alvestad T, Jolley KA, Wilson DJ, McCarthy ND, Caugant DA, Maiden MC., J. Clin. Microbiol. 42(11), 2004
PMID: 15528708
Epidemic meningitis, meningococcaemia, and Neisseria meningitidis.
Stephens DS, Greenwood B, Brandtzaeg P., Lancet 369(9580), 2007
PMID: 17604802
Structure and genetics of the meningococcal capsule.
Frosch M, Vogel U., 2006
Global epidemiology of meningococcal disease.
Harrison LH, Trotter CL, Ramsay ME., Vaccine 27 Suppl 2(), 2009
PMID: 19477562
Infectious disease. An ill wind, bringing meningitis.
Roberts L., Science 320(5884), 2008
PMID: 18583588
Meningococcal carriage and disease--population biology and evolution.
Caugant DA, Maiden MC., Vaccine 27 Suppl 2(), 2009
PMID: 19464092
Genome flexibility in Neisseria meningitidis.
Schoen C, Tettelin H, Parkhill J, Frosch M., Vaccine 27 Suppl 2(), 2009
PMID: 19477564
A chromosomally integrated bacteriophage in invasive meningococci.
Bille E, Zahar JR, Perrin A, Morelle S, Kriz P, Jolley KA, Maiden MC, Dervin C, Nassif X, Tinsley CR., J. Exp. Med. 201(12), 2005
PMID: 15967821
Multilocus sequence typing of bacteria.
Maiden MC., Annu. Rev. Microbiol. 60(), 2006
PMID: 16774461
Multilocus sequence typing for global surveillance of meningococcal disease.
Brehony C, Jolley KA, Maiden MC., FEMS Microbiol. Rev. 31(1), 2006
PMID: 17168997
Meningococcal genetic variation mechanisms viewed through comparative analysis of serogroup C strain FAM18.
Bentley SD, Vernikos GS, Snyder LA, Churcher C, Arrowsmith C, Chillingworth T, Cronin A, Davis PH, Holroyd NE, Jagels K, Maddison M, Moule S, Rabbinowitsch E, Sharp S, Unwin L, Whitehead S, Quail MA, Achtman M, Barrell B, Saunders NJ, Parkhill J., PLoS Genet. 3(2), 2006
PMID: 17305430
Comparative genome biology of a serogroup B carriage and disease strain supports a polygenic nature of meningococcal virulence.
Joseph B, Schneiker-Bekel S, Schramm-Gluck A, Blom J, Claus H, Linke B, Schwarz RF, Becker A, Goesmann A, Frosch M, Schoen C., J. Bacteriol. 192(20), 2010
PMID: 20709895
Whole-genome comparison of disease and carriage strains provides insights into virulence evolution in Neisseria meningitidis.
Schoen C, Blom J, Claus H, Schramm-Gluck A, Brandt P, Muller T, Goesmann A, Joseph B, Konietzny S, Kurzai O, Schmitt C, Friedrich T, Linke B, Vogel U, Frosch M., Proc. Natl. Acad. Sci. U.S.A. 105(9), 2008
PMID: 18305155
Association of a bacteriophage with meningococcal disease in young adults.
Bille E, Ure R, Gray SJ, Kaczmarski EB, McCarthy ND, Nassif X, Maiden MC, Tinsley CR., PLoS ONE 3(12), 2008
PMID: 19065260
Comparative genomics of Neisseria meningitidis: core genome, islands of horizontal transfer and pathogen-specific genes.
Dunning Hotopp JC, Grifantini R, Kumar N, Tzeng YL, Fouts D, Frigimelica E, Draghi M, Giuliani MM, Rappuoli R, Stephens DS, Grandi G, Tettelin H., Microbiology (Reading, Engl.) 152(Pt 12), 2006
PMID: 17159225
Identification of pathogen-specific genes through microarray analysis of pathogenic and commensal Neisseria species.
Stabler RA, Marsden GL, Witney AA, Li Y, Bentley SD, Tang CM, Hinds J., Microbiology (Reading, Engl.) 151(Pt 9), 2005
PMID: 16151203
Comparative genomics identifies the genetic islands that distinguish Neisseria meningitidis, the agent of cerebrospinal meningitis, from other Neisseria species.
Perrin A, Bonacorsi S, Carbonnelle E, Talibi D, Dessen P, Nassif X, Tinsley C., Infect. Immun. 70(12), 2002
PMID: 12438387
Population genetics of Neisseria meningitidis.
Vogel U, Schoen C, Elias J., 2010
Evaluation of one- and two-color gene expression arrays for microbial comparative genome hybridization analyses in routine applications.
Schwarz R, Joseph B, Gerlach G, Schramm-Gluck A, Engelhard K, Frosch M, Muller T, Schoen C., J. Clin. Microbiol. 48(9), 2010
PMID: 20592156
Principles of population genetics: Sinauer Associates
Hartl DL, Clark AG., 2007
Population genetics of microbial pathogens estimated from multilocus sequence typing (MLST) data.
Perez-Losada M, Browne EB, Madsen A, Wirth T, Viscidi RP, Crandall KA., Infect. Genet. Evol. 6(2), 2005
PMID: 16503511
Lessons from meningococcal carriage studies.
Caugant DA, Tzanakaki G, Kriz P., FEMS Microbiol. Rev. 31(1), 2007
PMID: 17233635
The microbial pan-genome.
Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R., Curr. Opin. Genet. Dev. 15(6), 2005
PMID: 16185861
The repertoire of minimal mobile elements in the Neisseria species and evidence that these are involved in horizontal gene transfer in other bacteria.
Snyder LA, McGowan S, Rogers M, Duro E, O'Farrell E, Saunders NJ., Mol. Biol. Evol. 24(12), 2007
PMID: 17921485
Capsule switching of Neisseria meningitidis.
Swartley JS, Marfin AA, Edupuganti S, Liu LJ, Cieslak P, Perkins B, Wenger JD, Stephens DS., Proc. Natl. Acad. Sci. U.S.A. 94(1), 1997
PMID: 8990198
Rapid serogroup switching in Neisseria meningitidis.
Vogel U, Claus H, Frosch M., N. Engl. J. Med. 342(3), 2000
PMID: 10651563
Evidence for capsule switching between carried and disease-causing Neisseria meningitidis strains.
Beddek AJ, Li MS, Kroll JS, Jordan TW, Martin DR., Infect. Immun. 77(7), 2009
PMID: 19451248
Population structure and capsular switching of invasive Neisseria meningitidis isolates in the pre-meningococcal conjugate vaccine era--United States, 2000-2005.
Harrison LH, Shutt KA, Schmink SE, Marsh JW, Harcourt BH, Wang X, Whitney AM, Stephens DS, Cohn AA, Messonnier NE, Mayer LW., J. Infect. Dis. 201(8), 2010
PMID: 20199241
Amino acid 310 determines the donor substrate specificity of serogroup W-135 and Y capsule polymerases of Neisseria meningitidis.
Claus H, Stummeyer K, Batzilla J, Muhlenhoff M, Vogel U., Mol. Microbiol. 71(4), 2008
PMID: 19170877
Two-partner secretion systems of Neisseria meningitidis associated with invasive clonal complexes.
van Ulsen P, Rutten L, Feller M, Tommassen J, van der Ende A., Infect. Immun. 76(10), 2008
PMID: 18678657
A functional two-partner secretion system contributes to adhesion of Neisseria meningitidis to epithelial cells.
Schmitt C, Turner D, Boesl M, Abele M, Frosch M, Kurzai O., J. Bacteriol. 189(22), 2007
PMID: 17873034
CRISPR/Cas, the immune system of bacteria and archaea.
Horvath P, Barrangou R., Science 327(5962), 2010
PMID: 20056882
Protein secretion and secreted proteins in pathogenic Neisseriaceae.
van Ulsen P, Tommassen J., FEMS Microbiol. Rev. 30(2), 2006
PMID: 16472308
A simple and robust statistical test for detecting the presence of recombination.
Bruen TC, Philippe H, Bryant D., Genetics 172(4), 2006
PMID: 16489234
Do DNA microarrays have their future behind them?
Coppee JY., Microbes Infect. 10(9), 2008
PMID: 18662797
Mathematical modeling of evolution of horizontally transferred genes.
Novozhilov AS, Karev GP, Koonin EV., Mol. Biol. Evol. 22(8), 2005
PMID: 15901840
Evolvability is a selectable trait.
Earl DJ, Deem MW., Proc. Natl. Acad. Sci. U.S.A. 101(32), 2004
PMID: 15289608
The human microbiome project.
Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI., Nature 449(7164), 2007
PMID: 17943116
Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli: a comparative genomics approach.
Chen SL, Hung CS, Xu J, Reigstad CS, Magrini V, Sabo A, Blasiar D, Bieri T, Meyer RR, Ozersky P, Armstrong JR, Fulton RS, Latreille JP, Spieth J, Hooton TM, Mardis ER, Hultgren SJ, Gordon JI., Proc. Natl. Acad. Sci. U.S.A. 103(15), 2006
PMID: 16585510
Comparisons of dN/dS are time dependent for closely related bacterial genomes.
Rocha EP, Smith JM, Hurst LD, Holden MT, Cooper JE, Smith NH, Feil EJ., J. Theor. Biol. 239(2), 2005
PMID: 16239014
The population genetics of dN/dS.
Kryazhimskiy S, Plotkin JB., PLoS Genet. 4(12), 2008
PMID: 19081788
Impact of recombination on bacterial evolution.
Didelot X, Maiden MC., Trends Microbiol. 18(7), 2010
PMID: 20452218
Role of selection in the emergence of lineages and the evolution of virulence in Neisseria meningitidis.
Buckee CO, Jolley KA, Recker M, Penman B, Kriz P, Gupta S, Maiden MC., Proc. Natl. Acad. Sci. U.S.A. 105(39), 2008
PMID: 18815379
Phage variation: understanding the behaviour of an accidental pathogen.
Moxon ER, Jansen VA., Trends Microbiol. 13(12), 2005
PMID: 16257527
A simulation study of the reliability of recombination detection methods.
Wiuf C, Christensen T, Hein J., Mol. Biol. Evol. 18(10), 2001
PMID: 11557798
The coalescent of bacterial populations.
Schierup MH, Wiuf C., 2010
mlstdbNet - distributed multi-locus sequence typing (MLST) databases.
Jolley KA, Chan MS, Maiden MC., BMC Bioinformatics 5(), 2004
PMID: 15230973
Inference of bacterial microevolution using multilocus sequence data.
Didelot X, Falush D., Genetics 175(3), 2006
PMID: 17151252
SplitsTree: analyzing and visualizing evolutionary data.
Huson DH., Bioinformatics 14(1), 1998
PMID: 9520503
jModelTest: phylogenetic model averaging.
Posada D., Mol. Biol. Evol. 25(7), 2008
PMID: 18397919
DnaSP, DNA polymorphism analyses by the coalescent and other methods.
Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R., Bioinformatics 19(18), 2003
PMID: 14668244
A statistical test for detecting geographic subdivision.
Hudson RR, Boos DD, Kaplan NL., Mol. Biol. Evol. 9(1), 1992
PMID: 1552836
A new statistic for detecting genetic differentiation.
Hudson RR., Genetics 155(4), 2000
PMID: 10924493
RDP2: recombination detection and analysis from sequence alignments.
Martin DP, Williamson C, Posada D., Bioinformatics 21(2), 2004
PMID: 15377507
Complete genome sequence of Neisseria meningitidis serogroup B strain MC58.
Tettelin H, Saunders NJ, Heidelberg J, Jeffries AC, Nelson KE, Eisen JA, Ketchum KA, Hood DW, Peden JF, Dodson RJ, Nelson WC, Gwinn ML, DeBoy R, Peterson JD, Hickey EK, Haft DH, Salzberg SL, White O, Fleischmann RD, Dougherty BA, Mason T, Ciecko A, Parksey DS, Blair E, Cittone H, Clark EB, Cotton MD, Utterback TR, Khouri H, Qin H, Vamathevan J, Gill J, Scarlato V, Masignani V, Pizza M, Grandi G, Sun L, Smith HO, Fraser CM, Moxon ER, Rappuoli R, Venter JC., Science 287(5459), 2000
PMID: 10710307
Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491.
Parkhill J, Achtman M, James KD, Bentley SD, Churcher C, Klee SR, Morelli G, Basham D, Brown D, Chillingworth T, Davies RM, Davis P, Devlin K, Feltwell T, Hamlin N, Holroyd S, Jagels K, Leather S, Moule S, Mungall K, Quail MA, Rajandream MA, Rutherford KM, Simmonds M, Skelton J, Whitehead S, Spratt BG, Barrell BG., Nature 404(6777), 2000
PMID: 10761919
Limma: linear models for microarray data.
Smyth GK., 2005

The COG database: a tool for genome-scale analysis of protein functions and evolution.
Tatusov RL, Galperin MY, Natale DA, Koonin EV., Nucleic Acids Res. 28(1), 2000
PMID: 10592175
NeMeSys: a biological resource for narrowing the gap between sequence and function in the human pathogen Neisseria meningitidis.
Rusniok C, Vallenet D, Floquet S, Ewles H, Mouze-Soulama C, Brown D, Lajus A, Buchrieser C, Medigue C, Glaser P, Pelicic V., Genome Biol. 10(10), 2009
PMID: 19818133
The minimal mobile element.
Saunders NJ, Snyder LA., Microbiology (Reading, Engl.) 148(Pt 12), 2002
PMID: 12480877
Genomic islands in pathogenic and environmental microorganisms.
Dobrindt U, Hochhut B, Hentschel U, Hacker J., Nat. Rev. Microbiol. 2(5), 2004
PMID: 15100694

Swofford DL., 2003
Controlling the false discovery rate: a practical and powerful approach to multiple testing.
Benjamini Y, Hochberg Y., 1995
GenDB--an open source genome annotation system for prokaryote genomes.
Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Puhler A., Nucleic Acids Res. 31(8), 2003
PMID: 12682369
A genomic perspective on protein families.
Tatusov RL, Koonin EV, Lipman DJ., Science 278(5338), 1997
PMID: 9381173
RevTrans: Multiple alignment of coding DNA from aligned amino acid sequences.
Wernersson R, Pedersen AG., Nucleic Acids Res. 31(13), 2003
PMID: 12824361
Clonal and variable properties of Neisseria meningitidis isolated from cases and carriers during and after an epidemic in The Gambia, West Africa.
Crowe BA, Wall RA, Kusecek B, Neumann B, Olyhoek T, Abdillahi H, Hassan-King M, Greenwood BM, Poolman JT, Achtman M., J. Infect. Dis. 159(4), 1989
PMID: 2494268
Point mutation in meningococcal por A gene associated with increased endemic disease.
McGuinness BT, Clarke IN, Lambden PR, Barlow AK, Poolman JT, Jones DM, Heckels JE., Lancet 337(8740), 1991
PMID: 1705642

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 21541312
PubMed | Europe PMC

Suchen in

Google Scholar