12 Publikationen
-
-
-
-
2023 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2954456Herr, S., Kato, I., Kinoshita, S., & Spitz, M. (2023). Local well-posedness of a system describing laser-plasma interactions. Vietnam Journal of Mathematics. Special issue dedicated to Carlos Kenig on the occasion of his 70th birthday., 51, 759-770. https://doi.org/10.1007/s10013-022-00577-0PUB | PDF | DOI | Download (ext.) | WoS | arXiv
-
2023 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2967813Spitz, M. (2023). Almost sure local wellposedness and scattering for the energy-critical cubic nonlinear Schrödinger equation with supercritical data. Nonlinear Analysis, 229, 113204. https://doi.org/10.1016/j.na.2022.113204PUB | DOI | WoS
-
2022 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2966263Spitz, M. (2022). On the almost sure scattering for the energy-critical cubic wave equation with supercritical data. Communications on Pure and Applied Analysis, 21(12), 4041-4070. https://doi.org/10.3934/cpaa.2022134PUB | DOI | WoS
-
2022 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2967431Schnaubelt, R., & Spitz, M. (2022). Local wellposedness of quasilinear Maxwell equations with conservative interface conditions. Communications in Mathematical Sciences, 20(8), 2265-2313. https://doi.org/10.4310/CMS.2022.v20.n8.a6PUB | DOI | Download (ext.) | WoS
-
2022 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958887Spitz, M. (2022). Randomized final-state problem for the Zakharov system in dimension three. Communications in Partial Differential Equations , 47(2), 346-377. https://doi.org/10.1080/03605302.2021.1983595PUB | DOI | WoS
-
2022 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2958894Spitz, M. (2022). Regularity theory for nonautonomous Maxwell equations with perfectly conducting boundary conditions. Journal of Mathematical Analysis and Applications, 506(1), 125646. https://doi.org/10.1016/j.jmaa.2021.125646PUB | DOI | WoS
-
-
2019 | Zeitschriftenaufsatz | Veröffentlicht | PUB-ID: 2962784Spitz, M. (2019). Local wellposedness of nonlinear Maxwell equations with perfectly conducting boundary conditions. Journal of Differential Equations, 266(8), 5012-5063. https://doi.org/10.1016/j.jde.2018.10.019PUB | DOI | WoS
-
2017 | Dissertation | Veröffentlicht | PUB-ID: 2962785Spitz, M. (2017). Local Wellposedness of Nonlinear Maxwell Equations. Karlsruhe: Karlsruher Inst. für Technologie, Bibliothek. https://doi.org/10.5445/IR/1000078030PUB | DOI