Almost sure local wellposedness and scattering for the energy-critical cubic nonlinear Schrödinger equation with supercritical data

Spitz M (2023)
Nonlinear Analysis 229: 113204.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
We study the cubic defocusing nonlinear Schrödinger equation on with supercritical initial data. For randomized initial data in , we prove almost sure local wellposedness for and almost sure scattering for . The randomization is based on a unit-scale decomposition in frequency space, a decomposition in the angular variable, and – for the almost sure scattering result – an additional unit-scale decomposition in physical space. We employ new probabilistic estimates for the linear Schrödinger flow with randomized data, where we effectively combine the advantages of the different decompositions.
Erscheinungsjahr
2023
Zeitschriftentitel
Nonlinear Analysis
Band
229
Art.-Nr.
113204
ISSN
0362-546X
Page URI
https://pub.uni-bielefeld.de/record/2967813

Zitieren

Spitz M. Almost sure local wellposedness and scattering for the energy-critical cubic nonlinear Schrödinger equation with supercritical data. Nonlinear Analysis. 2023;229: 113204.
Spitz, M. (2023). Almost sure local wellposedness and scattering for the energy-critical cubic nonlinear Schrödinger equation with supercritical data. Nonlinear Analysis, 229, 113204. https://doi.org/10.1016/j.na.2022.113204
Spitz, Martin. 2023. “Almost sure local wellposedness and scattering for the energy-critical cubic nonlinear Schrödinger equation with supercritical data”. Nonlinear Analysis 229: 113204.
Spitz, M. (2023). Almost sure local wellposedness and scattering for the energy-critical cubic nonlinear Schrödinger equation with supercritical data. Nonlinear Analysis 229:113204.
Spitz, M., 2023. Almost sure local wellposedness and scattering for the energy-critical cubic nonlinear Schrödinger equation with supercritical data. Nonlinear Analysis, 229: 113204.
M. Spitz, “Almost sure local wellposedness and scattering for the energy-critical cubic nonlinear Schrödinger equation with supercritical data”, Nonlinear Analysis, vol. 229, 2023, : 113204.
Spitz, M.: Almost sure local wellposedness and scattering for the energy-critical cubic nonlinear Schrödinger equation with supercritical data. Nonlinear Analysis. 229, : 113204 (2023).
Spitz, Martin. “Almost sure local wellposedness and scattering for the energy-critical cubic nonlinear Schrödinger equation with supercritical data”. Nonlinear Analysis 229 (2023): 113204.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar