Regularity theory for nonautonomous Maxwell equations with perfectly conducting boundary conditions

Spitz M (2022)
Journal of Mathematical Analysis and Applications 506(1): 125646.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
In this work we study linear Maxwell equations with time-and space-dependent matrix-valued permittivity and permeability on domains with a perfectly conducting boundary. This leads to an initial boundary value problem for a first-order hyperbolic system with characteristic boundary. We prove a priori estimates for solutions in H-m. Moreover, we show the existence of a unique H-m-solution if the coefficients and the data are sufficiently regular and satisfy certain compatibility conditions. Since the boundary is characteristic for the Maxwell system, we have to exploit the divergence conditions in the Maxwell equations in order to derive the energy-type H-m-estimates. A combination of these estimates with several regularization techniques then yields the existence of solutions in H-m. (C) 2021 Elsevier Inc. All rights reserved.
Stichworte
Maxwell equations; Perfectly conducting boundary conditions; Hyperbolic; system; Initial boundary value problem; Characteristic boundary; Regularity theory
Erscheinungsjahr
2022
Zeitschriftentitel
Journal of Mathematical Analysis and Applications
Band
506
Ausgabe
1
Art.-Nr.
125646
ISSN
0022-247X
eISSN
1096-0813
Page URI
https://pub.uni-bielefeld.de/record/2958894

Zitieren

Spitz M. Regularity theory for nonautonomous Maxwell equations with perfectly conducting boundary conditions. Journal of Mathematical Analysis and Applications. 2022;506(1): 125646.
Spitz, M. (2022). Regularity theory for nonautonomous Maxwell equations with perfectly conducting boundary conditions. Journal of Mathematical Analysis and Applications, 506(1), 125646. https://doi.org/10.1016/j.jmaa.2021.125646
Spitz, Martin. 2022. “Regularity theory for nonautonomous Maxwell equations with perfectly conducting boundary conditions”. Journal of Mathematical Analysis and Applications 506 (1): 125646.
Spitz, M. (2022). Regularity theory for nonautonomous Maxwell equations with perfectly conducting boundary conditions. Journal of Mathematical Analysis and Applications 506:125646.
Spitz, M., 2022. Regularity theory for nonautonomous Maxwell equations with perfectly conducting boundary conditions. Journal of Mathematical Analysis and Applications, 506(1): 125646.
M. Spitz, “Regularity theory for nonautonomous Maxwell equations with perfectly conducting boundary conditions”, Journal of Mathematical Analysis and Applications, vol. 506, 2022, : 125646.
Spitz, M.: Regularity theory for nonautonomous Maxwell equations with perfectly conducting boundary conditions. Journal of Mathematical Analysis and Applications. 506, : 125646 (2022).
Spitz, Martin. “Regularity theory for nonautonomous Maxwell equations with perfectly conducting boundary conditions”. Journal of Mathematical Analysis and Applications 506.1 (2022): 125646.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar